Multistage deformation events have occurred in the northeastern Jiangshao Fault (Suture) Belt. The earliest two are ductile deformation events. The first is the ca. 820 Ma top-to-the-northwest ductile thrusting, whi...Multistage deformation events have occurred in the northeastern Jiangshao Fault (Suture) Belt. The earliest two are ductile deformation events. The first is the ca. 820 Ma top-to-the-northwest ductile thrusting, which directly resulted from the collision between the Cathaysia Old Land and the Chencai Arc (?) during the Late Neoproterozoic, and the Jiangnan Orogenic Belt that formed as the ocean closed between the Yangtze Plate and the jointed Cathaysia Old Land and the Chencai Arc due to continuous compression. The second is the ductile left-lateral strike-slipping that occurred in the latest Early Paleozoic. Since the Jinning period, all deformation events represent the reactivation or inversion of intraplate structures due to the collisions between the North China and Yangtze plates during the Triassic and between the Philippine Sea and Eurasian plates during the Cenozoic. In the Triassic, brittle right-lateral strike-slipping and subsequent top-to-the south thrusting occurred along the whole northeastern Jiangshao Fault Zone because of the collision between the North China and Yangtze plates. In the Late Mesozoic, regional extension took place across southeastern China. In the Cenozoic, the collision between the Philippine Sea and Eurasian plates resulted in brittle thrusts along the whole Jiangnan Old land in the Miocene. The Jiangshao Fault Belt is a weak zone in the crust with long history, and its reactivation is one of important characteristics of the deformation in South China; however, late-stage deformation events did not occur beyond the Jiangnan Old Land and most of them are parallel to the strike of the Old Land, which is similar to the Cenozoic deformation in Central Asia. In addition, the Jiangnan old Land is not a collisional boundary between the Yangtze Plate and Cathaysia Old Land in the Triassic.展开更多
In this paper, remote sensing techniques,as well as field studies, have been used to investigate the geomorphological processes and landscape evolution along the Saravan Fault, SE Iran to highlight how topographic fea...In this paper, remote sensing techniques,as well as field studies, have been used to investigate the geomorphological processes and landscape evolution along the Saravan Fault, SE Iran to highlight how topographic features were influenced by active tectonics. Quantitative geomorphic analysis was carried out using mountain-front sinuosity(Smf),valley floor width-valley height ratio(Vf), drainage basin asymmetry factor(Af), Hypsometric integral(Hi), drainage basin shape index(Bs), mean axial slope of channel(MASC), standard deviation of topography(STD) and index of active tectonic(Iat).Remote sensing techniques, as well as field studies revealed that the Saravan Fault have three parts trending N-S, NW-SE, and E-W. Obtained results show that basins with high Iat index are located at where the strike of the Saravan Faults changes and where several strike-slip faults are crossed the Saravan fault.展开更多
The regional extent and spatial distribution of ultrahigh pressure metamorphic(UHPM) and high pressure metamorphic (HPM) rocks, and the geometrical relationships of various petrotectonic units in the Dabie-Sulu region...The regional extent and spatial distribution of ultrahigh pressure metamorphic(UHPM) and high pressure metamorphic (HPM) rocks, and the geometrical relationships of various petrotectonic units in the Dabie-Sulu region indicate that the Triassic collisional suture line between the Sino-Korean and Yangtze cratons is situated at the northern margin of the Dabie massif, that is,along the Balifan-Mozitan-Xiaotian fault in the Dabie region, and possibly is linked to the Wulian-Yantai fault in the Sulu region to tbe east. The suture line has been strongly modified duriug and subsequent to UHPM aud HPM events.展开更多
The giant Central Asian Orogenic Belt is an extensive accretionary orogen,of which the Solonker suture,as a major regional suture,coincides closely with an early Permian paleobiogeographical boundary.This suture is co...The giant Central Asian Orogenic Belt is an extensive accretionary orogen,of which the Solonker suture,as a major regional suture,coincides closely with an early Permian paleobiogeographical boundary.This suture is considered to mark the location of the final closure of the Paleo-Asian Ocean between the North China Craton and the Mongolian Terrane.Although the closure time of the Paleo-Asian Ocean along the Solonker suture has generally been regarded as Late Permian-Early Triassic,uncertainty remains because of a lack of typical collisionrelated features(e.g.,high-grade regional metamorphism and well-developed fold-thrust structures)and a scarcity of outcrops.The present study reports Early Permian foliated gabbros and dikes(288-275 Ma)and Middle-Late Permian undeformed layered gabbros,strongly peraluminous granites,and I-type granites(265-254 Ma)in the Xinhure area along the northern margin of the North China Craton.The Early Permian foliated intrusions have a subduction-related geochemical signature and were derived from partial melting of lithospheric mantle modified by subduction-related melts or fluids at the active margin of the North China Craton.In contrast,the Late Permian undeformed layered gabbros and strongly peraluminous granites were derived from partial melting of lithospheric mantle and middle-upper crust,respectively,triggered by asthenospheric upwelling.Therefore,a transition from an end-compressional to an extensional environment according to a transition from collision termination to postcollision of the North China Craton and Mongolian Terrane may have occurred between 275 Ma and 262 Ma.This time span can be considered as the final closure time of the Paleo-Asian Ocean along the Solonker suture.展开更多
The Dabie Mountains are a collisional orogen between the South and North China blocks. The rock assemblages, isotopic dating and tectonic relationship of the tectonic-petrologic units in the eastern Dabie orogen indic...The Dabie Mountains are a collisional orogen between the South and North China blocks. The rock assemblages, isotopic dating and tectonic relationship of the tectonic-petrologic units in the eastern Dabie orogen indicate that the orogen is mainly composed of the different-grades metamorphic basement with minor low-grade metamorphic cover. No ophiolitic mélange and the Paleozoic volcanic-intrusive rock associated with the southern margin of the North China block were found there, suggesting that they belong to the northern margin of the South China block. The boundary between the tectonic-petrologic units is generally an extensional shear zone developed in the exhumation process of the ultrahigh pressure metamorphic rocks. In the northern part of the Dabie Mountains, the extensional-thrust and nappe structure represent the products of extensional tectonism. That is, there is no key tectonic boundary to indicate the occurrence of the suture zone there. Therefore, neither the Shuihou-Wuhe shear zone, nor the Mozitan-Xiaotian fault, is the suture zone between the South and North China blocks. The zone is believed to be at the front area of the Xinyang-Shucheng fault, covered by the Mesozoic-Cenozoic deposits within the Hefei basin.展开更多
South Tianshan–Solonker suture,is the largest and southernmost suture within the Central Asian orogenic belt(CAOB).It records the ultimate collision between Tarim–North China cratons and Siberia craton,and is common...South Tianshan–Solonker suture,is the largest and southernmost suture within the Central Asian orogenic belt(CAOB).It records the ultimate collision between Tarim–North China cratons and Siberia craton,and is commonly interpreted as marking the eventual closure of Paleo-Asian Ocean.South Tianshan suture belongs to the western segment of the suture zone,and its evolutionary features are important for defining the formation age of the South Tianshan–Solonker suture.In this paper,the authors review the geochronological,geochemical,petrographic,and paleontological evidence within South Tianshan suture to delineate its formation era and closure characteristics,and thus further revealing the ultimate evolutionary pattern of the western segment of Paleo-Asian Ocean.This suture records strong plate collision before Late Carboniferous,forming a series of high-pressure metamorphic rocks,characterized by the presence of blue schist,eclogite and mica schist.In Permian,the whole area was under a relatively stable post-orogenic setting,with the formation of bimodal volcanic rocks,post-collisional granites,and terrestrial molasses.Sedimentary facies gradually changed from marine to either lacustrine or fluvial during this period.An Early Permian granite dike crosscuts the HP metamorphic belt,and the HP metamorphic rocks also underwent retrograde metamorphism at this time,indicating the formation of the South Tianshan suture was earlier than Permian.Hence,the western section of Paleo-Asian Ocean closed during Late Carboniferous,and Tarim Craton moved northward to collide with Kazakhstan–Yili Block,leading to the formation of the South Tianshan suture.展开更多
The Shangdan suture zone(SDZ)in the Qinling orogenic belt(QOB)is a key to understanding the East Asia tectonic evolution.The SDZ gives information about convergent processes between the North China Block(NCB)and South...The Shangdan suture zone(SDZ)in the Qinling orogenic belt(QOB)is a key to understanding the East Asia tectonic evolution.The SDZ gives information about convergent processes between the North China Block(NCB)and South China Block(SCB).In the Late Mesozoic,several shear zones evolved along the SDZ boundary that helps us comprehend the collisional deformation between the NCB and SCB,which was neglected in previous studies.These shear zones play an essential role in the tectonic evolution of the East Asia continents.This study focuses on the deformation and geochronology of two shear zones distributed along the SDZ,identified in the Shaliangzi and Maanqiao areas.The shear sense indicators and kinematic vorticity numbers(0.54–0.90)suggest these shear zones have sinistral shear and sub-simple shear deformation kinematics.The quartz’s dynamic recrystallization and c-axis fabric analysis in the Maanqiao shear zone(MSZ)revealed that the MSZ experienced deformation under green-schist facies conditions at∼400–500℃.The Shaliangzi shear zone deformed under amphibolite facies at∼500–700℃.The^(40)Ar/^(39)Ar(muscovite-biotite)dating of samples provided a plateau age of 121–123 Ma.Together with previously published data,our results concluded that QOB was dominated by compressional tectonics during the Late Early Cretaceous.Moreover,we suggested that the Siberian Block moved back to the south and Lhasa-Qiantang-Indochina Block to the north,which promoted intra-continental compressional tectonics.展开更多
The area change of heat abnormity is not in accordance with conclusions of former thermal infrared remote sensing studies of the Qinghai-Tibet Plateau, which were that the temperature of Yarlung Zangbo River suture be...The area change of heat abnormity is not in accordance with conclusions of former thermal infrared remote sensing studies of the Qinghai-Tibet Plateau, which were that the temperature of Yarlung Zangbo River suture belt of the southern Plateau is high and the northern temperature is low. The study result in this paper shows that the highest temperature is found in the Bangong Co-Nujiang River suture belt, the Yarlung Zangbo River suture belt temperature is the second highest, and the northern Tibet temperature is the lowest. The study demonstration area was the suture belt areas of the Yarlung Zangbo River and the Bangong Co-Nujiang River in the Qinghai-Tibet Plateau, where the land temperature of the Qinghai-Tibet Plateau and the bore temperature of field land surface were measured and the emissivity of land surface was calculated. In addition, the authors explore the mechanism of the relationship between thermal infrared remote sensing and constructing thermodynamics and reach four new conclusions about the thermodynamics of the Tibet Plateau.展开更多
基金funded by the Nonprofit Special Research Program"The formation and destruction of northeastern segment of Cathaysia-the Yangtze Plate Suture Zone and their mineralization"(No.200811015)from the Ministry of Land and Resourcethe Land Resource Survey Project of the Ministry of Land and Natural Resources,China"The convergence and breakup process of main blocks of China and their geological background for mineralization"(Nos.1212011121064,1212011121068)from the China Geological Survey
文摘Multistage deformation events have occurred in the northeastern Jiangshao Fault (Suture) Belt. The earliest two are ductile deformation events. The first is the ca. 820 Ma top-to-the-northwest ductile thrusting, which directly resulted from the collision between the Cathaysia Old Land and the Chencai Arc (?) during the Late Neoproterozoic, and the Jiangnan Orogenic Belt that formed as the ocean closed between the Yangtze Plate and the jointed Cathaysia Old Land and the Chencai Arc due to continuous compression. The second is the ductile left-lateral strike-slipping that occurred in the latest Early Paleozoic. Since the Jinning period, all deformation events represent the reactivation or inversion of intraplate structures due to the collisions between the North China and Yangtze plates during the Triassic and between the Philippine Sea and Eurasian plates during the Cenozoic. In the Triassic, brittle right-lateral strike-slipping and subsequent top-to-the south thrusting occurred along the whole northeastern Jiangshao Fault Zone because of the collision between the North China and Yangtze plates. In the Late Mesozoic, regional extension took place across southeastern China. In the Cenozoic, the collision between the Philippine Sea and Eurasian plates resulted in brittle thrusts along the whole Jiangnan Old land in the Miocene. The Jiangshao Fault Belt is a weak zone in the crust with long history, and its reactivation is one of important characteristics of the deformation in South China; however, late-stage deformation events did not occur beyond the Jiangnan Old Land and most of them are parallel to the strike of the Old Land, which is similar to the Cenozoic deformation in Central Asia. In addition, the Jiangnan old Land is not a collisional boundary between the Yangtze Plate and Cathaysia Old Land in the Triassic.
基金the Research Council of University of Sistan and Baluchestan which has supported the project
文摘In this paper, remote sensing techniques,as well as field studies, have been used to investigate the geomorphological processes and landscape evolution along the Saravan Fault, SE Iran to highlight how topographic features were influenced by active tectonics. Quantitative geomorphic analysis was carried out using mountain-front sinuosity(Smf),valley floor width-valley height ratio(Vf), drainage basin asymmetry factor(Af), Hypsometric integral(Hi), drainage basin shape index(Bs), mean axial slope of channel(MASC), standard deviation of topography(STD) and index of active tectonic(Iat).Remote sensing techniques, as well as field studies revealed that the Saravan Fault have three parts trending N-S, NW-SE, and E-W. Obtained results show that basins with high Iat index are located at where the strike of the Saravan Faults changes and where several strike-slip faults are crossed the Saravan fault.
文摘The regional extent and spatial distribution of ultrahigh pressure metamorphic(UHPM) and high pressure metamorphic (HPM) rocks, and the geometrical relationships of various petrotectonic units in the Dabie-Sulu region indicate that the Triassic collisional suture line between the Sino-Korean and Yangtze cratons is situated at the northern margin of the Dabie massif, that is,along the Balifan-Mozitan-Xiaotian fault in the Dabie region, and possibly is linked to the Wulian-Yantai fault in the Sulu region to tbe east. The suture line has been strongly modified duriug and subsequent to UHPM aud HPM events.
基金supported by the National Natural Science Foundation of China(Grant Nos.41402042,41002064)Fundamental Research Funds for the Central Universities(Grant Nos.310827172006,300102278402)Geological investigation work project of China Geological Survey(No.12120115069701)。
文摘The giant Central Asian Orogenic Belt is an extensive accretionary orogen,of which the Solonker suture,as a major regional suture,coincides closely with an early Permian paleobiogeographical boundary.This suture is considered to mark the location of the final closure of the Paleo-Asian Ocean between the North China Craton and the Mongolian Terrane.Although the closure time of the Paleo-Asian Ocean along the Solonker suture has generally been regarded as Late Permian-Early Triassic,uncertainty remains because of a lack of typical collisionrelated features(e.g.,high-grade regional metamorphism and well-developed fold-thrust structures)and a scarcity of outcrops.The present study reports Early Permian foliated gabbros and dikes(288-275 Ma)and Middle-Late Permian undeformed layered gabbros,strongly peraluminous granites,and I-type granites(265-254 Ma)in the Xinhure area along the northern margin of the North China Craton.The Early Permian foliated intrusions have a subduction-related geochemical signature and were derived from partial melting of lithospheric mantle modified by subduction-related melts or fluids at the active margin of the North China Craton.In contrast,the Late Permian undeformed layered gabbros and strongly peraluminous granites were derived from partial melting of lithospheric mantle and middle-upper crust,respectively,triggered by asthenospheric upwelling.Therefore,a transition from an end-compressional to an extensional environment according to a transition from collision termination to postcollision of the North China Craton and Mongolian Terrane may have occurred between 275 Ma and 262 Ma.This time span can be considered as the final closure time of the Paleo-Asian Ocean along the Solonker suture.
文摘The Dabie Mountains are a collisional orogen between the South and North China blocks. The rock assemblages, isotopic dating and tectonic relationship of the tectonic-petrologic units in the eastern Dabie orogen indicate that the orogen is mainly composed of the different-grades metamorphic basement with minor low-grade metamorphic cover. No ophiolitic mélange and the Paleozoic volcanic-intrusive rock associated with the southern margin of the North China block were found there, suggesting that they belong to the northern margin of the South China block. The boundary between the tectonic-petrologic units is generally an extensional shear zone developed in the exhumation process of the ultrahigh pressure metamorphic rocks. In the northern part of the Dabie Mountains, the extensional-thrust and nappe structure represent the products of extensional tectonism. That is, there is no key tectonic boundary to indicate the occurrence of the suture zone there. Therefore, neither the Shuihou-Wuhe shear zone, nor the Mozitan-Xiaotian fault, is the suture zone between the South and North China blocks. The zone is believed to be at the front area of the Xinyang-Shucheng fault, covered by the Mesozoic-Cenozoic deposits within the Hefei basin.
基金the National Natural Science Foundation of China(Nos.41730210,41888101).
文摘South Tianshan–Solonker suture,is the largest and southernmost suture within the Central Asian orogenic belt(CAOB).It records the ultimate collision between Tarim–North China cratons and Siberia craton,and is commonly interpreted as marking the eventual closure of Paleo-Asian Ocean.South Tianshan suture belongs to the western segment of the suture zone,and its evolutionary features are important for defining the formation age of the South Tianshan–Solonker suture.In this paper,the authors review the geochronological,geochemical,petrographic,and paleontological evidence within South Tianshan suture to delineate its formation era and closure characteristics,and thus further revealing the ultimate evolutionary pattern of the western segment of Paleo-Asian Ocean.This suture records strong plate collision before Late Carboniferous,forming a series of high-pressure metamorphic rocks,characterized by the presence of blue schist,eclogite and mica schist.In Permian,the whole area was under a relatively stable post-orogenic setting,with the formation of bimodal volcanic rocks,post-collisional granites,and terrestrial molasses.Sedimentary facies gradually changed from marine to either lacustrine or fluvial during this period.An Early Permian granite dike crosscuts the HP metamorphic belt,and the HP metamorphic rocks also underwent retrograde metamorphism at this time,indicating the formation of the South Tianshan suture was earlier than Permian.Hence,the western section of Paleo-Asian Ocean closed during Late Carboniferous,and Tarim Craton moved northward to collide with Kazakhstan–Yili Block,leading to the formation of the South Tianshan suture.
基金the National Natural Science Foundation of China who provided necessary financial support for this study(Nos.41872218,41572179,and 41372204)the State Key Laboratory of Continental Dynamics,Northwest University,Xi’an for providing a special fund to accomplish this study.
文摘The Shangdan suture zone(SDZ)in the Qinling orogenic belt(QOB)is a key to understanding the East Asia tectonic evolution.The SDZ gives information about convergent processes between the North China Block(NCB)and South China Block(SCB).In the Late Mesozoic,several shear zones evolved along the SDZ boundary that helps us comprehend the collisional deformation between the NCB and SCB,which was neglected in previous studies.These shear zones play an essential role in the tectonic evolution of the East Asia continents.This study focuses on the deformation and geochronology of two shear zones distributed along the SDZ,identified in the Shaliangzi and Maanqiao areas.The shear sense indicators and kinematic vorticity numbers(0.54–0.90)suggest these shear zones have sinistral shear and sub-simple shear deformation kinematics.The quartz’s dynamic recrystallization and c-axis fabric analysis in the Maanqiao shear zone(MSZ)revealed that the MSZ experienced deformation under green-schist facies conditions at∼400–500℃.The Shaliangzi shear zone deformed under amphibolite facies at∼500–700℃.The^(40)Ar/^(39)Ar(muscovite-biotite)dating of samples provided a plateau age of 121–123 Ma.Together with previously published data,our results concluded that QOB was dominated by compressional tectonics during the Late Early Cretaceous.Moreover,we suggested that the Siberian Block moved back to the south and Lhasa-Qiantang-Indochina Block to the north,which promoted intra-continental compressional tectonics.
文摘The area change of heat abnormity is not in accordance with conclusions of former thermal infrared remote sensing studies of the Qinghai-Tibet Plateau, which were that the temperature of Yarlung Zangbo River suture belt of the southern Plateau is high and the northern temperature is low. The study result in this paper shows that the highest temperature is found in the Bangong Co-Nujiang River suture belt, the Yarlung Zangbo River suture belt temperature is the second highest, and the northern Tibet temperature is the lowest. The study demonstration area was the suture belt areas of the Yarlung Zangbo River and the Bangong Co-Nujiang River in the Qinghai-Tibet Plateau, where the land temperature of the Qinghai-Tibet Plateau and the bore temperature of field land surface were measured and the emissivity of land surface was calculated. In addition, the authors explore the mechanism of the relationship between thermal infrared remote sensing and constructing thermodynamics and reach four new conclusions about the thermodynamics of the Tibet Plateau.