Islands and the mainland are separated by seas,and the distances between them might be so long that the height on the mainland cannot be exactly translated to the islands,resulting in different height systems on the m...Islands and the mainland are separated by seas,and the distances between them might be so long that the height on the mainland cannot be exactly translated to the islands,resulting in different height systems on the mainland and the islands.In this study,we used astrogeodetic deflections of the vertical and ellipsoidal heights of points on the mainland and island near their coastlines to implement height connection across sea areas.First,the modeled gravity and modeled astrogeodetic vertical deflections of segmentation points along connecting routes over the sea between the mainland and the island were determined by Earth Gravity Model(EGM),and the ellipsoidal heights of segmentation points were determined by the satellite altimetry data sets.Second,we used a linear interpolation model to increase the precision of the vertical deflections of segmentation points.Third,we computed the geopotential difference of points between the mainland and the island using a method derived from geopotential theory and the astronomical leveling principle.Finally,we estimated the normal height of the point on the island using the geopotential-difference iterative computation approach.Using observed data of normal heights,ellipsoidal heights,and astrogeodetic vertical deflections referring to height sites in Qingdao,Shandong Province,we conducted a numerical experiment involving the normal height connection across sea regions.We determined the data of the ellipsoidal heights and gravity of segmentation points along the connecting route across the water in the numerical experiment using DTU10.The distance of the height connection across the sea was approximately 10.5 km.According to China's official leveling specifications,the experimental results met the criterion of third-class leveling precision.展开更多
The orthometric height (OH) system plays a key role in geodesy, and it has broad applications in various fields and activities. Based on general relativity theory (GRT), on an arbitrary equi-geo- potential surface, th...The orthometric height (OH) system plays a key role in geodesy, and it has broad applications in various fields and activities. Based on general relativity theory (GRT), on an arbitrary equi-geo- potential surface, there does not exist the gravity frequency shift of an electromagnetic wave signal. However, between arbitrary two different equi-geopotential surfaces, there exists the gra- vity frequency shift of the signal. The relationship between the geopotential difference and the gravity frequency shift between arbitrary two points P and Q is referred to as the gravity frequency shift equation. Based on this equation, one can determine the geopotential difference as well as the OH difference between two separated points P and Q either by using electromagnetic wave signals propagated between P and Q, or by using the Global Positioning System (GPS) satellite signals received simultaneously by receivers at P and Q. Suppose an emitter at P emits a signal with frequency f towards a receiver at Q, and the received frequency of the signal at Q is , or suppose an emitter on board a flying GPS satellite emits signals with frequency f towards two receivers at P and Q on ground, and the received frequencies of the signals at P and Q are and , respectively, then, the geopoten-tial dif- ference between these two points can be determined based on the geopotential frequen- cy shift equation, using either the gravity frequency shift ? f or ? , and the corresponding OH difference is further determined based on the Bruns’ formula. Besides, using this approach a unified world height datum system might be realized, because P and Q could be chosen quite arbitrarily, e.g., they are located on two separated continents or islands.展开更多
Inconsistencies between datasets are examined with reference to flood tidal elevations in the Tamar River estuary, Tasmania Australia. Errors in a 30-year-old commonly cited dataset have been perpetuated in subsequent...Inconsistencies between datasets are examined with reference to flood tidal elevations in the Tamar River estuary, Tasmania Australia. Errors in a 30-year-old commonly cited dataset have been perpetuated in subsequent publications and datasets, and a clarification is herein provided. Elevation of the flood tidal wave as it propagates the estuary is evident in mean tide level and mean sea level, although the analysis is compromised by the temporal differences of the datasets. As sea levels rise due to global warming, the importance of accurate on-going sea level data in any estuary will become more acute.展开更多
基金financially supported by the foundation of the Key Laboratory of Marine Environmental Survey Technology and Application,Ministry of Natural Resources,China (No. MESTA-2020-B006)the National Natural Science Foundation of China (No.41774001)
文摘Islands and the mainland are separated by seas,and the distances between them might be so long that the height on the mainland cannot be exactly translated to the islands,resulting in different height systems on the mainland and the islands.In this study,we used astrogeodetic deflections of the vertical and ellipsoidal heights of points on the mainland and island near their coastlines to implement height connection across sea areas.First,the modeled gravity and modeled astrogeodetic vertical deflections of segmentation points along connecting routes over the sea between the mainland and the island were determined by Earth Gravity Model(EGM),and the ellipsoidal heights of segmentation points were determined by the satellite altimetry data sets.Second,we used a linear interpolation model to increase the precision of the vertical deflections of segmentation points.Third,we computed the geopotential difference of points between the mainland and the island using a method derived from geopotential theory and the astronomical leveling principle.Finally,we estimated the normal height of the point on the island using the geopotential-difference iterative computation approach.Using observed data of normal heights,ellipsoidal heights,and astrogeodetic vertical deflections referring to height sites in Qingdao,Shandong Province,we conducted a numerical experiment involving the normal height connection across sea regions.We determined the data of the ellipsoidal heights and gravity of segmentation points along the connecting route across the water in the numerical experiment using DTU10.The distance of the height connection across the sea was approximately 10.5 km.According to China's official leveling specifications,the experimental results met the criterion of third-class leveling precision.
文摘The orthometric height (OH) system plays a key role in geodesy, and it has broad applications in various fields and activities. Based on general relativity theory (GRT), on an arbitrary equi-geo- potential surface, there does not exist the gravity frequency shift of an electromagnetic wave signal. However, between arbitrary two different equi-geopotential surfaces, there exists the gra- vity frequency shift of the signal. The relationship between the geopotential difference and the gravity frequency shift between arbitrary two points P and Q is referred to as the gravity frequency shift equation. Based on this equation, one can determine the geopotential difference as well as the OH difference between two separated points P and Q either by using electromagnetic wave signals propagated between P and Q, or by using the Global Positioning System (GPS) satellite signals received simultaneously by receivers at P and Q. Suppose an emitter at P emits a signal with frequency f towards a receiver at Q, and the received frequency of the signal at Q is , or suppose an emitter on board a flying GPS satellite emits signals with frequency f towards two receivers at P and Q on ground, and the received frequencies of the signals at P and Q are and , respectively, then, the geopoten-tial dif- ference between these two points can be determined based on the geopotential frequen- cy shift equation, using either the gravity frequency shift ? f or ? , and the corresponding OH difference is further determined based on the Bruns’ formula. Besides, using this approach a unified world height datum system might be realized, because P and Q could be chosen quite arbitrarily, e.g., they are located on two separated continents or islands.
文摘Inconsistencies between datasets are examined with reference to flood tidal elevations in the Tamar River estuary, Tasmania Australia. Errors in a 30-year-old commonly cited dataset have been perpetuated in subsequent publications and datasets, and a clarification is herein provided. Elevation of the flood tidal wave as it propagates the estuary is evident in mean tide level and mean sea level, although the analysis is compromised by the temporal differences of the datasets. As sea levels rise due to global warming, the importance of accurate on-going sea level data in any estuary will become more acute.