AIM: Portal hypertension is a common complication of liver cirrhosis. Intrahepatic pressure can be elevated in several ways. Abnormal architecture affecting the vasculature, an increase in vasoconstrictors and increa...AIM: Portal hypertension is a common complication of liver cirrhosis. Intrahepatic pressure can be elevated in several ways. Abnormal architecture affecting the vasculature, an increase in vasoconstrictors and increased circulation from the splanchnic viscera into the portal system may all contribute. It follows that endogenous vasodilators may be able to alleviate the hypertension. We therefore aimed to investigate the levels of endogenous vasodilators, nitric oxide (NO) and carbon monoxide (CO) through the expression of nitric oxide synthase (NOS) and heme oxygenase (HO). METHOD: Cirrhotic (n = 20) and non-cirrhotic (n = 20) livers were obtained from patients who had undergone surgery. The mRNA and protein expressions of the various isoforms of NOS and HO were examined using competitive PCR, Western Blot and immunohistochemistry. RESULTS: There was no significant change in either inducible NOS (iNOS) or neuronal NOS (nNOS) expressions while endothelial NOS (eNOS) was up- regulated in cirrhotic livers. Concomitantly, caveolin-1, an established down-regulator of eNOS, was upregulated. Inducible HO-1 and constitutive HO-2 were found to show increased expression in cirrhotic livers albeit in different Iocalizations. CONCLUSION: The differences of NOS expression might be due to their differing roles in maintaining liver homeostasis and/or involvement in the pathology of cirrhosis. Sheer stress within the hypertensive liver may induce increased expression of eNOS. In turn, caveolin-1 is also increased. Whether this serves as a defense mechanism against further cirrhosis or is a consequence of cirrhosis, is yet unknown. The elevated expression of HO-1 and HO-2 suggest that CO may compensate in its role as a vasodilator albeit weakly. It is possible that CO and NO have parallel or coordinated functions within the liver and may work antagonistically in the pathophysiology of portal hypertension.展开更多
To investigate whether the expression of exogenous heme oxygenase-1 (HO-1) gene within vascular smooth muscle cells (VSMC) could protect the cells from free radical attack and inhibit cell proliferation, we establishe...To investigate whether the expression of exogenous heme oxygenase-1 (HO-1) gene within vascular smooth muscle cells (VSMC) could protect the cells from free radical attack and inhibit cell proliferation, we established an in vitro transfection of human HO-1 gene into rat VSMC mediated by a retroviral vector. The results showed that the profound expression of HO-1 protein as well as HO activity was 1.8- and 2.0-fold increased respectively in the transfected cells compared to the non-transfected ones. The treatment of VSMC with different concentrations of H2O2 led to the remarkable cell damage as indicated by survival rate and LDH leakage. However, the resistance of the HO-1 transfected VSMC against H2O2 was significantly raised. This protective effect was dramatically diminished when the transfected VSMC were pretreated with ZnPP-IX, a specific inhibitor of HO, for 24 h. In addition, we found that the growth potential of the transfected cells was significantly inhibited directly by increased activity of HO-1, and this effect might be related to decreased phosphorylation of MAPK. These results suggest that the overexpression of introduced hHO-1 is potentially able to reduce the risk factors of atherosclerosis, partially due to its cellular protection against oxidative injury and to its inhibitory effect on cellular proliferation.展开更多
This study investigated the expression of hemeoxygenase-1 (HO-1) in rats with acute lung rejection and its implication. A valid rat orthotopic left lung transplantation model (SD rat→Wistar rat) was established b...This study investigated the expression of hemeoxygenase-1 (HO-1) in rats with acute lung rejection and its implication. A valid rat orthotopic left lung transplantation model (SD rat→Wistar rat) was established by using an improved three-cuff anastomosis technique. The rats were divided into control group, CoPP (HO-1 inducer)-treated group and ZnPP (HO-1 inhibitor)-treated group. The severity of acute rejection was graded on the basis of the morphologic changes of the lung samples stained with HE. The expression of HO-1 protein in lung tissue was detected by using immunohistochemistry and Western blot, and HO-1 mRNA activity was assayed by RT-PCR. The results showed that the expression of HO-1 protein was significantly increased with the acute rejection grading in rats (P〈0.01). As compared with control and ZnPP-treated groups, the severity of acute rejection was not alleviated and the grade not reduced significantly in CoPP-treated group (P〉0.05). It was concluded that HO-1 protein might be involved in the pathological process of post-graft acute rejection. The expression of HO-1 protein was increased gradually with aggravation of acute rejection, and HO-1 protein might be used as an index to monitor acute rejection after lung transplantation.展开更多
基金Supported by Research Biolabs Pte Ltd.Beatrice J Goh is a recipient of the Research Scholarship awarded by the National University of Singapore
文摘AIM: Portal hypertension is a common complication of liver cirrhosis. Intrahepatic pressure can be elevated in several ways. Abnormal architecture affecting the vasculature, an increase in vasoconstrictors and increased circulation from the splanchnic viscera into the portal system may all contribute. It follows that endogenous vasodilators may be able to alleviate the hypertension. We therefore aimed to investigate the levels of endogenous vasodilators, nitric oxide (NO) and carbon monoxide (CO) through the expression of nitric oxide synthase (NOS) and heme oxygenase (HO). METHOD: Cirrhotic (n = 20) and non-cirrhotic (n = 20) livers were obtained from patients who had undergone surgery. The mRNA and protein expressions of the various isoforms of NOS and HO were examined using competitive PCR, Western Blot and immunohistochemistry. RESULTS: There was no significant change in either inducible NOS (iNOS) or neuronal NOS (nNOS) expressions while endothelial NOS (eNOS) was up- regulated in cirrhotic livers. Concomitantly, caveolin-1, an established down-regulator of eNOS, was upregulated. Inducible HO-1 and constitutive HO-2 were found to show increased expression in cirrhotic livers albeit in different Iocalizations. CONCLUSION: The differences of NOS expression might be due to their differing roles in maintaining liver homeostasis and/or involvement in the pathology of cirrhosis. Sheer stress within the hypertensive liver may induce increased expression of eNOS. In turn, caveolin-1 is also increased. Whether this serves as a defense mechanism against further cirrhosis or is a consequence of cirrhosis, is yet unknown. The elevated expression of HO-1 and HO-2 suggest that CO may compensate in its role as a vasodilator albeit weakly. It is possible that CO and NO have parallel or coordinated functions within the liver and may work antagonistically in the pathophysiology of portal hypertension.
基金This work was kindly supported by Na-tional Natural Science Foundation of China(No.39670308)
文摘To investigate whether the expression of exogenous heme oxygenase-1 (HO-1) gene within vascular smooth muscle cells (VSMC) could protect the cells from free radical attack and inhibit cell proliferation, we established an in vitro transfection of human HO-1 gene into rat VSMC mediated by a retroviral vector. The results showed that the profound expression of HO-1 protein as well as HO activity was 1.8- and 2.0-fold increased respectively in the transfected cells compared to the non-transfected ones. The treatment of VSMC with different concentrations of H2O2 led to the remarkable cell damage as indicated by survival rate and LDH leakage. However, the resistance of the HO-1 transfected VSMC against H2O2 was significantly raised. This protective effect was dramatically diminished when the transfected VSMC were pretreated with ZnPP-IX, a specific inhibitor of HO, for 24 h. In addition, we found that the growth potential of the transfected cells was significantly inhibited directly by increased activity of HO-1, and this effect might be related to decreased phosphorylation of MAPK. These results suggest that the overexpression of introduced hHO-1 is potentially able to reduce the risk factors of atherosclerosis, partially due to its cellular protection against oxidative injury and to its inhibitory effect on cellular proliferation.
文摘This study investigated the expression of hemeoxygenase-1 (HO-1) in rats with acute lung rejection and its implication. A valid rat orthotopic left lung transplantation model (SD rat→Wistar rat) was established by using an improved three-cuff anastomosis technique. The rats were divided into control group, CoPP (HO-1 inducer)-treated group and ZnPP (HO-1 inhibitor)-treated group. The severity of acute rejection was graded on the basis of the morphologic changes of the lung samples stained with HE. The expression of HO-1 protein in lung tissue was detected by using immunohistochemistry and Western blot, and HO-1 mRNA activity was assayed by RT-PCR. The results showed that the expression of HO-1 protein was significantly increased with the acute rejection grading in rats (P〈0.01). As compared with control and ZnPP-treated groups, the severity of acute rejection was not alleviated and the grade not reduced significantly in CoPP-treated group (P〉0.05). It was concluded that HO-1 protein might be involved in the pathological process of post-graft acute rejection. The expression of HO-1 protein was increased gradually with aggravation of acute rejection, and HO-1 protein might be used as an index to monitor acute rejection after lung transplantation.