We calculate the concurrence of all pairwise entanglement of Heisenberg XX open chain with single systemimpurity in three-qubit and four-qubit cases,and find that the impurity parameter J_i has great effect on pairwis...We calculate the concurrence of all pairwise entanglement of Heisenberg XX open chain with single systemimpurity in three-qubit and four-qubit cases,and find that the impurity parameter J_i has great effect on pairwiseentanglement.Choosing the proper parameter J_i,we can obtain the maximal pairwise entanglement of the nearestqubits and make the non-nearest qubits entangle.展开更多
In this paper, we study the quantum phase transition and the effect of impurity on the thermal entanglement between any two lattices in three-qubit Heisenberg XX chain in a uniform magnetic field. We show that the qua...In this paper, we study the quantum phase transition and the effect of impurity on the thermal entanglement between any two lattices in three-qubit Heisenberg XX chain in a uniform magnetic field. We show that the quantum phase transition always appears when impurity parameter is an arbitrary constant and unequal to zero, the external magnetic field and impurity parameters have a great effect on it. Also, there exists a relation between the quantum phase transition and the entanglement. By modulating the temperature, magnetic field and the impurity parameters, the entanglement between any two lattices can exhibit platform-like behaviour, which can be used to realize entanglement switch.展开更多
The entanglement in an anisotropic spin-1 Heisenberg chain with a uniform magnetic field is investigated. The ground-state entanglement will undergo two different kinds of transitions when the anisotropy △ and the am...The entanglement in an anisotropic spin-1 Heisenberg chain with a uniform magnetic field is investigated. The ground-state entanglement will undergo two different kinds of transitions when the anisotropy △ and the amplitude of the magnetic field B are varied. The thermal entanglement of the nearest neighbour always declines when B increases no matter what the value of the anisotropy is. It is very interesting to note that the entanglement of the next-nearest neighbour can increase to a maximum at a certain magnetic field. Regardless of the boundary condition, the nearestneighbour entanglement always decreases and approaches to a constant value when the size of the system is very large. The constant value of open boundary condition is much larger than that of periodic boundary condition.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No.10547008the Foundation of Xi'an Institute of Posts and Telecommunications under Grant No. 105-0414Natural Science Fnundation of Shanxi Province under Grant No.2004A15
文摘We calculate the concurrence of all pairwise entanglement of Heisenberg XX open chain with single systemimpurity in three-qubit and four-qubit cases,and find that the impurity parameter J_i has great effect on pairwiseentanglement.Choosing the proper parameter J_i,we can obtain the maximal pairwise entanglement of the nearestqubits and make the non-nearest qubits entangle.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10774088)the Key Program of the National Natural Science Foundation of China (Grant No. 10534030)
文摘In this paper, we study the quantum phase transition and the effect of impurity on the thermal entanglement between any two lattices in three-qubit Heisenberg XX chain in a uniform magnetic field. We show that the quantum phase transition always appears when impurity parameter is an arbitrary constant and unequal to zero, the external magnetic field and impurity parameters have a great effect on it. Also, there exists a relation between the quantum phase transition and the entanglement. By modulating the temperature, magnetic field and the impurity parameters, the entanglement between any two lattices can exhibit platform-like behaviour, which can be used to realize entanglement switch.
文摘The entanglement in an anisotropic spin-1 Heisenberg chain with a uniform magnetic field is investigated. The ground-state entanglement will undergo two different kinds of transitions when the anisotropy △ and the amplitude of the magnetic field B are varied. The thermal entanglement of the nearest neighbour always declines when B increases no matter what the value of the anisotropy is. It is very interesting to note that the entanglement of the next-nearest neighbour can increase to a maximum at a certain magnetic field. Regardless of the boundary condition, the nearestneighbour entanglement always decreases and approaches to a constant value when the size of the system is very large. The constant value of open boundary condition is much larger than that of periodic boundary condition.