期刊文献+
共找到6,442篇文章
< 1 2 250 >
每页显示 20 50 100
基于蒙特卡洛法的Euler-Bernoulli梁基频和振型求解方法
1
作者 祝磊 张建勋 孙海林 《Journal of Southeast University(English Edition)》 EI CAS 2024年第2期203-209,共7页
将Rayleigh法和蒙特卡洛法相结合,在Euler-Bernoulli梁理论假设下求解了均匀梁、变截面梁和附带集中质量的变截面梁自由振动问题.对原本连续的梁结构模型进行离散化处理,利用蒙特卡洛法给出梁结构的假设振型.将假设得到的梁结构振型函... 将Rayleigh法和蒙特卡洛法相结合,在Euler-Bernoulli梁理论假设下求解了均匀梁、变截面梁和附带集中质量的变截面梁自由振动问题.对原本连续的梁结构模型进行离散化处理,利用蒙特卡洛法给出梁结构的假设振型.将假设得到的梁结构振型函数代入Rayleigh法,多次计算过程中,将历次基频所得值与计算所得最小值进行比较,根据其相对误差判断是否满足收敛条件,进而求得基频及对应的振型.结果表明,不同计算模型中基频最大误差不超过10%,能够满足工程需求,且精度和时间的控制参数调整灵活,使用者可根据自身需要自行调节.该方法理论简明,适用范围广泛,能够快速准确地求解诸多类型的梁结构基频和振型. 展开更多
关键词 euler-BERNOULLI梁 基频 蒙特卡洛法 数值解
下载PDF
能量泛函及Euler-Lagrange方程在图像降噪中的应用研究
2
作者 王海燕 《佳木斯大学学报(自然科学版)》 CAS 2024年第6期173-175,180,共4页
研究了自适应分数阶偏微分方程修正模型的能量泛函及Euler-Lagrange方程。首先,定义了自适应分数阶偏微分方程修正模型的能量泛函,其中包含未知函数和拉格朗日乘子的集合。然后,通过求解能量泛函的极值方程,推导出了Euler-Lagrange方程... 研究了自适应分数阶偏微分方程修正模型的能量泛函及Euler-Lagrange方程。首先,定义了自适应分数阶偏微分方程修正模型的能量泛函,其中包含未知函数和拉格朗日乘子的集合。然后,通过求解能量泛函的极值方程,推导出了Euler-Lagrange方程。最后,讨论了Euler-Lagrange方程在自适应分数阶偏微分方程修正模型中的应用。 展开更多
关键词 分数阶微分方程 能量泛函 euler-LAGRANGE方程 修正模型
下载PDF
3维Heisenberg李三系的自同构及Rota-Baxter算子
3
作者 孔庆姝 林洁 姜敬敬 《东北师大学报(自然科学版)》 CAS 北大核心 2024年第2期1-6,共6页
研究了3维Heisenberg李三系的自同构问题.给出了3维Heisenberg李三系的自同构、导子以及权为0和1的Rota-Baxter算子的矩阵表达式.
关键词 heisenberg李三系 自同构 导子 Rota-Baxter算子
下载PDF
Pythagorean-hodograph曲线的最小旋转Euler-Rodrigues标架优化方法
4
作者 彭丰富 潘雨婷 《桂林电子科技大学学报》 2024年第1期105-110,共6页
针对空间Pythagorean-hodograph(PH)曲线的有理最小旋转标架(RMF)问题,基于五次空间PH曲线的Euler-Rodrigues(ER)标架提出一种最小旋转标架的优化方法。PH曲线由Bézier方法来构造,再利用Bernstein多项式及四元数来表示,曲线的ER标... 针对空间Pythagorean-hodograph(PH)曲线的有理最小旋转标架(RMF)问题,基于五次空间PH曲线的Euler-Rodrigues(ER)标架提出一种最小旋转标架的优化方法。PH曲线由Bézier方法来构造,再利用Bernstein多项式及四元数来表示,曲线的ER标架得到简单表示。当PH曲线的ER标架沿曲线弧的旋转角最小时,此时最小旋转ER标架也称曲线的RMF。在计算曲线的RMF的过程中,关键问题是求解旋转角度函数。由于有较多有理多项式的积分,一般难以找到角度函数的具体函数形式。运用最佳平方逼近的方法,构造一个多项式来近似表示旋转角度函数,对比不同次数多项式与角度函数的误差,得到合适次数的多项式近似角度函数。将多项式近似角度函数与直接计算角度函数求解曲线最小旋转ER标架所用时间对比,分析各自的计算量大小。数据结果证明,最佳平方逼近的方法可大大减少计算量,同时实现较小误差的目的。 展开更多
关键词 四元数 BERNSTEIN多项式 euler-Rodrigues标架 最小旋转标架 最佳平方逼近
下载PDF
Heisenberg群上的一个A-caloric逼近定理:次二次增长情况
5
作者 牛蒙慧 廖冬妮 马东亮 《赣南师范大学学报》 2024年第6期14-18,共5页
A-caloric逼近技巧在研究非线性抛物方程组弱解的正则性中起着重要的作用.本文在次二次增长情形下研究Heisenberg群上的一个A-逼近定理,该结果将为研究Heisenberg群中非线性抛物方程组弱解的最优正则性奠定基础.
关键词 heisenberg A-caloric逼近技巧 次二次增长条件
下载PDF
随机年龄结构固定资产系统倒向Euler法的p阶矩耗散性
6
作者 亢婷 《宁夏大学学报(自然科学版)》 CAS 2024年第1期9-15,30,共8页
在单边Lipschitz条件下,研究了一类随机年龄结构固定资产系统倒向Euler法数值解的p阶矩耗散性.当0<p<1时,步长满足一定条件可以得到系统的p阶矩耗散性;而p=2时,在对步长没有任何限制条件的情况下,得到了系统的均方耗散性.最后,通... 在单边Lipschitz条件下,研究了一类随机年龄结构固定资产系统倒向Euler法数值解的p阶矩耗散性.当0<p<1时,步长满足一定条件可以得到系统的p阶矩耗散性;而p=2时,在对步长没有任何限制条件的情况下,得到了系统的均方耗散性.最后,通过数值例子验证了理论结果的可行性和有效性. 展开更多
关键词 随机年龄结构固定资产系统 p阶矩耗散性 均方耗散性 倒向euler
下载PDF
一类漂移系数分段连续的随机微分方程驯服Euler方法的L^(p)收敛率
7
作者 胡慧敏 甘四清 《数学理论与应用》 2024年第2期1-19,共19页
本文研究一类漂移系数分段连续的标量随机微分方程的驯服Euler方法的L^(p)收敛率.更确切地说,本文在漂移系数是分段连续的并且呈多项式增长,扩散系数是Lipschitz连续的并且在漂移系数的间断点处不为0的假设下,证明方程具有唯一的强解,... 本文研究一类漂移系数分段连续的标量随机微分方程的驯服Euler方法的L^(p)收敛率.更确切地说,本文在漂移系数是分段连续的并且呈多项式增长,扩散系数是Lipschitz连续的并且在漂移系数的间断点处不为0的假设下,证明方程具有唯一的强解,并且对于任意的p∈[1,∞),驯服Euler方法的L^(p)收敛阶都可以达到1/2.此外,本文还提供一个数值算例来验证理论结果. 展开更多
关键词 随机微分方程 漂移系数 驯服euler方法 L^(p)收敛率
下载PDF
与Euler函数有关的一个五元不定方程的正整数解
8
作者 姜莲霞 张四保 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第4期424-432,共9页
对于任意正整数n,数论函数φ(n)为Euler函数.该文讨论了与Euler函数有关的一个五元不定方程φ(x_(1)x_(2)x_(3)x_(4)x 5)=3φ(x_(1))φ(x_(2))φ(x_(3))+4φ(x_(4))φ(x 5)的正整数解,利用Euler函数φ(n)的相关性质以及初等方法,得到了... 对于任意正整数n,数论函数φ(n)为Euler函数.该文讨论了与Euler函数有关的一个五元不定方程φ(x_(1)x_(2)x_(3)x_(4)x 5)=3φ(x_(1))φ(x_(2))φ(x_(3))+4φ(x_(4))φ(x 5)的正整数解,利用Euler函数φ(n)的相关性质以及初等方法,得到了这一方程共有501组正整数解,并给出了满足x_(1)≤x_(2)≤x_(3)与x_(4)≤x 5的61组正整数解. 展开更多
关键词 euler函数 不定方程 正整数解
下载PDF
一类Kirchhoff-Poisson系统在Heisenberg群上解的存在性
9
作者 郭加超 索洪敏 安育成 《南昌大学学报(理科版)》 CAS 2024年第1期1-13,共13页
在Heisenberg群上研究了一类临界的Kirchhoff-Poisson系统。由于存在临界和非局部项,导致空间嵌入不紧,在非线性项适当的假设下,通过变分方法克服了空间的紧性并且得到该系统至少存在一个解。在此基础上,借助形变引理和拓扑度理论,证明... 在Heisenberg群上研究了一类临界的Kirchhoff-Poisson系统。由于存在临界和非局部项,导致空间嵌入不紧,在非线性项适当的假设下,通过变分方法克服了空间的紧性并且得到该系统至少存在一个解。在此基础上,借助形变引理和拓扑度理论,证明了该解是一个变号解。 展开更多
关键词 heisenberg Kirchhoff-Poisson系统 变分方法 形变引理 拓扑度理论
下载PDF
扩展的Euler函数ζ及其相关定理
10
作者 王晋利 赵永哲 《黑龙江科学》 2024年第11期79-81,共3页
通过在F_(q)[x]中扩展Euler函数φ的定义提出了“扩展的Euler函数”这一概念,即ζ函数,给出ζ的计算公式,并证明了多个与ζ相关的定理。从中发现,ζ在F_(q)[x]中的性质与φ在整数集合中的性质存在对应关系。此外,对于任意的A∈F_(q) ^(n... 通过在F_(q)[x]中扩展Euler函数φ的定义提出了“扩展的Euler函数”这一概念,即ζ函数,给出ζ的计算公式,并证明了多个与ζ相关的定理。从中发现,ζ在F_(q)[x]中的性质与φ在整数集合中的性质存在对应关系。此外,对于任意的A∈F_(q) ^(n×n)\{0},可巧妙利用ζ解决F q[A]中非奇异矩阵的计数问题。 展开更多
关键词 euler函数 扩展的euler函数 非奇异矩阵
下载PDF
一类Heisenberg-Virasoro李代数上的交换线性映射
11
作者 徐玥 杨宁静 高寿兰 《湖州师范学院学报》 2024年第2期8-13,共6页
根据交换线性映射的性质,计算秩为2的Heisenberg-Virasoro李代数上的交换线性映射,以确定此李代数的形心.
关键词 秩为2的heisenberg-Virasoro李代数 交换线性映射 中心
下载PDF
扩散系数Holder连续的随机微分方程的截断Euler-Maruyama方法
12
作者 吕林峰 孟雪井 《应用数学》 北大核心 2024年第2期391-402,共12页
本文研究漂移系数超线性增长和扩散系数Holder连续的随机微分方程的截断Euler-Maruyama方法的强收敛性.研究结果显示强收敛率依赖于Holder指数.本文给出一个例子验证所得的结果.
关键词 截断EM方法 强收敛率 HOLDER连续
下载PDF
基于正则化思想的tilt-Euler法在边缘深度反演中的应用 被引量:1
13
作者 罗新刚 王万银 《吉林大学学报(地球科学版)》 CAS CSCD 北大核心 2024年第2期633-646,共14页
地质体边缘深度在重、磁位场数据半定量解释中起着至关重要的作用。由于重、磁异常及其各阶导数均满足欧拉齐次方程,tilt-Euler法在边缘深度反演方面备受青睐。然而,当重、磁异常的总水平导数或者总梯度模等于0时,倾斜角的一阶导数无法... 地质体边缘深度在重、磁位场数据半定量解释中起着至关重要的作用。由于重、磁异常及其各阶导数均满足欧拉齐次方程,tilt-Euler法在边缘深度反演方面备受青睐。然而,当重、磁异常的总水平导数或者总梯度模等于0时,倾斜角的一阶导数无法计算,导致倾斜角不能满足欧拉方程,tilt-Euler法无法使用。为了解决此问题,本文基于正则化思想,对倾斜角的一阶导数进行修改,使得重、磁异常的总水平导数或者总梯度模等于0时,倾斜角的一阶导数依然可以计算,修改后的倾斜角导数依然满足欧拉方程,称改进的方法为rtilt-Euler法;同时利用识别精度更高的归一化总水平导数垂向导数(NVDR-THDR)边缘识别方法对反演结果进行约束,剔除偏离边缘位置的坏点。理论模型试验结果表明,改进后的方法消除了重、磁异常总水平导数或者总梯度模很小或者等于0时,倾斜角导数无法计算以及反演结果不稳定的问题。将该方法应用到澳大利亚奥林匹克坝氧化铁铜金矿床边缘深度反演中,反演结果显示氧化铁铜金矿床边缘深度主要集中在0~100 m和100~200 m这两个深度段内,与沉积物剖面显示的矿床边缘深度0~200 m相符,证明了该方法的有效性。 展开更多
关键词 地质体边缘深度 重磁位场 正则化 rtilt-euler NVDR-THDR
下载PDF
Besov Estimates for Sub-Elliptic Equations in the Heisenberg Group
14
作者 Huimin Cheng Feng Zhou 《Advances in Pure Mathematics》 2024年第9期744-758,共15页
In this article, we deal with weak solutions to non-degenerate sub-elliptic equations in the Heisenberg group, and study the regularities of solutions. We establish horizontal Calderón-Zygmund type estimate in Be... In this article, we deal with weak solutions to non-degenerate sub-elliptic equations in the Heisenberg group, and study the regularities of solutions. We establish horizontal Calderón-Zygmund type estimate in Besov spaces with more general assumptions on coefficients for both homogeneous equations and non-homogeneous equations. This study of regularity estimates expands the Calderón-Zygmund theory in the Heisenberg group. 展开更多
关键词 heisenberg Group Sub-Elliptic Equations REGULARITY Besov Spaces
下载PDF
Heisenberg群中带奇异权的最优临界Hardy-Trudinger-Moser不等式
15
作者 蔺闯 胡云云 窦井波 《纯粹数学与应用数学》 2024年第1期27-43,共17页
本文建立了Heisenberg群中有界域和一般无界域上带奇异权的最优临界Hardy-Trudinger-Moser不等式.克服临界Hardy不等式和奇异权函数带来的困难,利用带奇异权的Trudinger-Moser不等式和一些基本估计建立了有界域上一般的带奇异权的临界Ha... 本文建立了Heisenberg群中有界域和一般无界域上带奇异权的最优临界Hardy-Trudinger-Moser不等式.克服临界Hardy不等式和奇异权函数带来的困难,利用带奇异权的Trudinger-Moser不等式和一些基本估计建立了有界域上一般的带奇异权的临界Hardy-Trudinger-Moser不等式,并通过选取适当的Moser函数得到了最佳常数.最后,利用分割积分区域的方法得到了一般无界域上带奇异权的最优临界Hardy-Trudinger-Moser不等式. 展开更多
关键词 heisenberg 奇异权函数 Trudinger-Moser不等式 Hardy-Trudinger-Moser不等式 最佳常数
下载PDF
含多维随机变量的广义概率密度演化方程解析解:以Euler-Bernoulli梁为例
16
作者 周永峰 李杰 《力学学报》 EI CAS CSCD 北大核心 2024年第9期2659-2668,共10页
广义概率密度演化方程的解析解,不仅具有重要理论价值,而且具有校验数值解、进而标定数值算法误差的作用.以Euler-Bernoulli简支梁为例,推导给出了梁受迫振动时跨中位移响应所对应的广义概率密度演化方程解析解.包括非平稳非高斯随机载... 广义概率密度演化方程的解析解,不仅具有重要理论价值,而且具有校验数值解、进而标定数值算法误差的作用.以Euler-Bernoulli简支梁为例,推导给出了梁受迫振动时跨中位移响应所对应的广义概率密度演化方程解析解.包括非平稳非高斯随机载荷作用下的解(包含2维随机变量)以及同时考虑载荷随机性和结构参数随机性时的解(分别包含2维、4维和5维随机变量).分析结果表明,真实的概率密度演化是一个十分复杂的过程,远不能用简单的概率分布函数加以描述.这一进展,可为概率密度演化理论的进一步深入研究提供一个方面的基础. 展开更多
关键词 广义概率密度演化方程 解析解 euler-Bernoulli 受迫振动 多维随机变量
下载PDF
三维无压Euler-Navier-Stokes方程组的格林函数
17
作者 李海梁 张越 《首都师范大学学报(自然科学版)》 2024年第1期131-144,共14页
本文研究三维无压Euler-Navier-Stokes耦合模型解的时空逐点行为,该模型可用于描述两流体运动。首先证明线性化系统的格林函数由惠更斯波、扩散波、Riesz波和包含由无压结构产生的稳态delta波的奇异部分组成,进而当初值具有适当的空间... 本文研究三维无压Euler-Navier-Stokes耦合模型解的时空逐点行为,该模型可用于描述两流体运动。首先证明线性化系统的格林函数由惠更斯波、扩散波、Riesz波和包含由无压结构产生的稳态delta波的奇异部分组成,进而当初值具有适当的空间衰减率时得到线性化系统Cauchy问题整体解的时空逐点估计。 展开更多
关键词 无压euler-Navier-Stokes方程组 格林函数 时空逐点行为
下载PDF
The tangential k-Cauchy-Fueter type operator and Penrose type integral formula on the generalized complex Heisenberg group
18
作者 REN Guang-zhen SHI Yun KANG Qian-qian 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第1期181-190,共10页
The tangential k-Cauchy-Fueter operator and k-CF functions are counterparts of the tangential Cauchy–Riemann operator and CR functions on the Heisenberg group in the theory of several complex variables,respectively.I... The tangential k-Cauchy-Fueter operator and k-CF functions are counterparts of the tangential Cauchy–Riemann operator and CR functions on the Heisenberg group in the theory of several complex variables,respectively.In this paper,we introduce a Lie group that the Heisenberg group can be imbedded into and call it generalized complex Heisenberg.We investigate quaternionic analysis on the generalized complex Heisenberg.We also give the Penrose integral formula for k-CF functions and construct the tangential k-Cauchy-Fueter complex. 展开更多
关键词 the generalized complex heisenberg group the tangential k-Cauchy-Fueter type operator Penrose-type integral formula
下载PDF
Euler Product Expressions of Absolute Tensor Products of Dirichlet L-Functions
19
作者 Hidenori Tanaka Shin-ya Koyama 《Advances in Pure Mathematics》 2024年第6期451-486,共36页
In this paper, we calculate the absolute tensor square of the Dirichlet L-functions and show that it is expressed as an Euler product over pairs of primes. The method is to construct an equation to link primes to a se... In this paper, we calculate the absolute tensor square of the Dirichlet L-functions and show that it is expressed as an Euler product over pairs of primes. The method is to construct an equation to link primes to a series which has the factors of the absolute tensor product of the Dirichlet L-functions. This study is a generalization of Akatsuka’s theorem on the Riemann zeta function, and gives a proof of Kurokawa’s prediction proposed in 1992. 展开更多
关键词 Dirichlet L-Function Absolute Tensor Product (Kurokawa Tensor Product) euler Product
下载PDF
THE RIEMANN PROBLEM FOR ISENTROPIC COMPRESSIBLE EULER EQUATIONS WITH DISCONTINUOUS FLUX
20
作者 孙印正 屈爱芳 袁海荣 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期37-77,共41页
We consider the singular Riemann problem for the rectilinear isentropic compressible Euler equations with discontinuous flux,more specifically,for pressureless flow on the left and polytropic flow on the right separat... We consider the singular Riemann problem for the rectilinear isentropic compressible Euler equations with discontinuous flux,more specifically,for pressureless flow on the left and polytropic flow on the right separated by a discontinuity x=x(t).We prove that this problem admits global Radon measure solutions for all kinds of initial data.The over-compressing condition on the discontinuity x=x(t)is not enough to ensure the uniqueness of the solution.However,there is a unique piecewise smooth solution if one proposes a slip condition on the right-side of the curve x=x(t)+0,in addition to the full adhesion condition on its left-side.As an application,we study a free piston problem with the piston in a tube surrounded initially by uniform pressureless flow and a polytropic gas.In particular,we obtain the existence of a piecewise smooth solution for the motion of the piston between a vacuum and a polytropic gas.This indicates that the singular Riemann problem looks like a control problem in the sense that one could adjust the condition on the discontinuity of the flux to obtain the desired flow field. 展开更多
关键词 compressible euler equations Riemann problem Radon measure solution delta shock discontinuous flux wave interactions
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部