期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
CFD simulation on shell-and-tube heat exchangers with small-angle helical baffles 被引量:3
1
作者 Minhua ZHANG 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2015年第2期183-193,共11页
Shell-and-tube heat exchanger with helical baffles is superior to that with segmental baffles in reducing pressure drop, eliminating dead zone and lowering the risks of vibration of tube bundle. This paper focused on ... Shell-and-tube heat exchanger with helical baffles is superior to that with segmental baffles in reducing pressure drop, eliminating dead zone and lowering the risks of vibration of tube bundle. This paper focused on the small-angle helical baffles that have been merely reported in open literature. These baffles are noncontinuous helical baffles with a helix angle of 10° to 30°, and their shapes are 1/4 ellipse, 1/4 sector and 1/3 sector. To assess the integrative performance, α/△p is employed, and the calculated results show that among the three baffle shapes the heat exchangers with a 1/4 sector helical baffle have the lowest pressure drop. Atβ = 10° and 20°, 1/4 sector helical baffle heat exchangers show the best integrative performance; at β = 30°, 1/4 ellipse and 1/4 sector helical baffle heat exchangers perform almost the same. For the study of helix angles, we found that 30° has the best integrative performance at low mass flow rate, almost the same as 20° at high mass flow rate. 展开更多
关键词 heat transfer pressure drop helical baffle CFD
原文传递
Effects of Shape and Quantity of Helical Baffle on the Shell-side Heat Transfer and Flow Performance of Heat Exchangers 被引量:6
2
作者 杜文静 王红福 程林 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第3期243-251,共9页
Shape and quantity of helical baffles have great impact on the shell-side performance of helical baffled heat exchangers (HBHE). In this work, three physical models of HBHE with baffles of different shape (trisecti... Shape and quantity of helical baffles have great impact on the shell-side performance of helical baffled heat exchangers (HBHE). In this work, three physical models of HBHE with baffles of different shape (trisection, quadrant and sextant sector) were investigated. Numerical simulations were performed on HBHE at three helix an- gles (10°, 25° and 40°) by the software ANSYS CFX. Analyses of numerical results indicate that the sextant HBHE shows relatively better fluid flow performance because the leakage flow in the triangle area is evidently reduced and the fluid streamline appears much closer to an ideal spiral flow, while the trisection and quadrant HBHE show more scattered and disordered streamline distributions. The convective heat transfer coefficient and pressure drop in three types of HBHE were presented. Further investigations on the shell side performance with different helical baf- fles were implemented by the field synergy theory. Both theoretical and numerical analyses gave support on the re- lations between helical baffle shape and shell-side performance. This paper may provide useful reference for the selection of baffle shade and auantitv in HBHE. 展开更多
关键词 helical baffled heat exchanger trisection QUADRANT SEXTANT field synergy principle
下载PDF
Performance comparison for oil-water heat transfer of circumferential overlap trisection helical baffle heat exchanger 被引量:2
3
作者 王伟晗 程道来 +1 位作者 刘涛 刘颖昊 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2720-2727,共8页
The performance tests were conducted on oil–water heat transfer in circumferential overlap trisection helical baffle heat exchangers with incline angles of 12°, 16°, 20°, 24° and 28°, and com... The performance tests were conducted on oil–water heat transfer in circumferential overlap trisection helical baffle heat exchangers with incline angles of 12°, 16°, 20°, 24° and 28°, and compared with a segmental baffle heat exchanger. The results show that the shell side heat transfer coefficient h_o and pressure drop Δp_o both increase while the comprehensive index h_o/Δp_o decreases with the increase of the mass flow rate of all schemes. And the shell side heat transfer coefficient, pressure drop and the comprehensive index ho/Δpo decrease with the increase of the baffle incline angle at a certain mass flow rate. The average values of shell side heat transfer coefficient and the comprehensive index h_o/Δp_o of the 12° helical baffled scheme are above 50% higher than those of the segmental one correspondingly, while the pressure drop value is very close and the ratios of the average values are about 1.664 and 1.596, respectively. The shell-side Nusselt number Nu_o and the comprehensive index Nu_o·Eu_(zo)^(-1) increase with the increase of Reynolds number of the shell side axial in all schemes, and the results also demonstrate that the small incline angled helical scheme has better comprehensive performance. 展开更多
关键词 performance experiments helical baffled heat exchangers circumferential overlap of baffles incline angle of baffle heat transfer enhancement
下载PDF
Numerical simulation and optimization design of the EGR cooler in vehicle 被引量:3
4
作者 Yu-qi HUANG Xiao-li YU Guo-dong LU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第9期1270-1276,共7页
The EGR (exhaust gas recirculation) technique can greatly reduce the NOx emission of diesel engines, especially when an EGR cooler is employed. Numerical simulations are applied to study the flow field and temperature... The EGR (exhaust gas recirculation) technique can greatly reduce the NOx emission of diesel engines, especially when an EGR cooler is employed. Numerical simulations are applied to study the flow field and temperature distributions inside the EGR cooler. Three different models of EGR cooler are investigated, among which model A is a traditional one, and models B and C are improved by adding a helical baffle in the cooling area. In models B and C the entry directions of cooling water are different, which mostly influences the flow resistance. The results show that the improved structures not only lengthen the flow path of the cooling water, but also enhance the heat exchange rate between the cool and hot media. In conclusion we suggest that the improved structures are more powerful than the traditional one. 展开更多
关键词 Exhaust gas recirculation (EGR) cooler Computational fluid dynamics (CFD) Shell-and-tube heat exchanger helical baffle
下载PDF
Heat Transfer and Flow Resistance Characteristics of Helical Baffle Heat Exchangers with Twisted Oval Tube 被引量:2
5
作者 GU Xin ZHENG Zhiyang +3 位作者 XIONG Xiaochao JIANG Erhui WANG Tongtong ZHANG Dongwei 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第2期370-378,共9页
To overcome the defect of the significant increase in pressure drop when the heat transfer performance of helical baffle heat exchanger is improved,a novel helical baffle heat exchanger with twisted oval tube is propo... To overcome the defect of the significant increase in pressure drop when the heat transfer performance of helical baffle heat exchanger is improved,a novel helical baffle heat exchanger with twisted oval tube is proposed.Numerical simulation was done to exhibit the shell side heat transfer and flow characteristics with CFD software Fluent.The field synergy principle was used to evaluate the shell side performance.The results show that the flow velocity distribution on the shell side of the spiral baffle heat exchanger is more uniform and the velocity near the tube wall increases in the range of research parameters,as the circular tube is replaced by a twisted elliptical tube with the same perimeter length.Moreover,the helical baffle heat exchanger with twisted oval tube has better field synergy of velocity and temperature gradient,velocity and pressure gradient.The helical baffle heat exchanger with helix angle of 15°has better performance than that of circular tube,and its heat transfer coefficient is improved about 3.3%and pressure drop is reduced by 17.1%–19.1%.Hence,the comprehensive heat transfer performance is improved by 21.5%–22.5%.When the helix angle is 20°,the comprehensive heat transfer performance is increased by 16.1%–18.0%with heat transfer coefficient improvement of 3.6%and pressure drop reduction of 13.9%–16.5%. 展开更多
关键词 twisted oval tube helical baffle field synergy principle heat transfer enhancement
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部