AIM; To determine whether Helicobacter pylori (H pylon) vacuolating cytotoxin (VacA) regulates release of proinflammatory cytokines (IL-1β, IL-8, TNF-α, and IL-6) or alters gastric epithelial cell viability an...AIM; To determine whether Helicobacter pylori (H pylon) vacuolating cytotoxin (VacA) regulates release of proinflammatory cytokines (IL-1β, IL-8, TNF-α, and IL-6) or alters gastric epithelial cell viability and to determine whether NaCl affects these VacA-induced changes. METHODS: Vacuolating activity was determined by measuring the uptake of neutral red into vacuoles of VacA-treated human gastric epithelial (AGS) cells. AGS cell viability was assessed by direct cell counting. Specific enzyme-linked immunosorbent assays (ELISA) and reverse transcdptase-polymerase chain reaction(RT-PCR) were performed to examine the effects of H pylori VacA and NaCl on cell pro-inflammatory cytokine production in AGS cells. Immunohistochemical staining of gastric tissue from Mongolian gerbils was used to confirm VacAinduced pro-inflammatory cytokine production and the effects of NaCl on this VacA-induced response. RESULTS: Addition of VacA alone reduced AGS cell viability (P〈 0.05), and this reduction was enhanced by high doses of NaCl (P〈0.05). VacA alone induced expression of TNF-α, IL-8 and IL-1β, while NaCl alone induced expression of TNF-α and IL-1β. Changes in mRNA levels in the presence of both VacA and NaCl were more complicated. For the case of TNF-α, expression was dosedependent on NaCl. IL-6 mRNA was not detected. However, low levels of IL-6 were detected by EUSA. Positive immunohistochemical staining of IL-1, IL-6, and TNF-α was found in gastric tissue of H pylori-infected gerbils fed with either a normal diet or a high salt diet. However, the staining of these three cytoldnes was sb'onger in H pylori-infected animals fed with a 5g/kg NaCl diet. CONCLUSION: VacA decreases the viability of AGS cells, and this effect can be enhanced by NaCl. NaCl also affects the production of pro-inflammatory cytokines in- duced by VacA, suggesting that NaCl plays an important role in Hpylori-induced gastric epithelial cell cytotoxicity.展开更多
Helicobacter pylori(H.pylori)infection might initiate and contribute to the progression of lymphoma from gastric mucosa-associated lymphoid tissue(MALT).Increasing evidence shows that eradication of H.pylori with anti...Helicobacter pylori(H.pylori)infection might initiate and contribute to the progression of lymphoma from gastric mucosa-associated lymphoid tissue(MALT).Increasing evidence shows that eradication of H.pylori with antibiotic therapy can lead to regression of gastric MALT lymphoma and can result in a 10-year sustained remission.The eradication of H.pylori is the standard care for patients with gastric MALT lymphoma.Cytotoxin-associated gene A(CagA)protein,one of the most extensively studied H.pylori virulence factors,is strongly associated with the gastric MALT lymphoma.CagA possesses polymorphisms according to its C-terminal structure and displays different functions among areas and races.After being translocated into B lymphocytes via typeⅣsecretion system,CagA deregulates intracellular signaling pathways in both tyrosine phosphorylation-dependent and-independent manners and/or some other pathways,and thereby promotes lymphomagenesis.A variety of proteins including p53and protein tyrosine phosphatases-2 are involved in the malignant transformation induced by CagA.Mucosal inflammation is the foundational mechanism underlying the occurrence and development of gastric MALT lymphoma.展开更多
AIM: To better understand the pathogenic role of Helicobacter pylori (H. pylori) in pre-eclampsia (PE), and whether it is associated or not with fetal growth retardation (FGR). METHODS: Maternal blood samples were col...AIM: To better understand the pathogenic role of Helicobacter pylori (H. pylori) in pre-eclampsia (PE), and whether it is associated or not with fetal growth retardation (FGR). METHODS: Maternal blood samples were collected from 62 consecutive pregnant women with a diagnosis of PE and/or FGR, and from 49 women with uneventful pregnancies (controls). Serum samples were evaluated by immunoblot assay for presence of specific antibodies against H. pylori antigens [virulence: cytotoxin-associated antigen A (CagA); ureases; heat shock protein B; flagellin A; persistence: vacuolating cytotoxin A (VacA)]. Maternal complete blood count and liver enzymes levels were assessed at delivery by an automated analyzer. RESULTS: A significantly higher percentage of H. pyloriseropositive women were found among PE cases (85.7%) compared to controls (42.9%, P < 0.001). There were no differences between pregnancies complicated by FGR without maternal hypertension (46.2%) and controls. Importantly, persistent and virulent infections (VacA/ CagA seropositive patients, intermediate leukocyte blood count and aspartate aminotransferase levels) were exclusively associated with pre-eclampsia complicated by FGR, while virulent but acute infections (CagA positive/ VacA negative patients, highest leukocyte blood count and aspartate aminotransferase levels) specifically correlated with PE without FGR. CONCLUSION: Our data strongly indicate that persistent and virulent H. pylori infections cause or contribute to PE complicated by FGR, but not to PE without feto-placental compromise.展开更多
Helicobacter pylori(H. pylori) is perhaps the most ubiquitous and successful human pathogen, since it colonizes the stomach of more than half of humankind. Infection with this bacterium is commonly acquired during chi...Helicobacter pylori(H. pylori) is perhaps the most ubiquitous and successful human pathogen, since it colonizes the stomach of more than half of humankind. Infection with this bacterium is commonly acquired during childhood. Once infected, people carry the bacteria for decades or even for life, if not treated. Persistent infection with this pathogen causes gastritis, peptic ulcer disease and is also strongly associated with the development of gastric cancer. Despite induction of innate and adaptive immune responses in the infected individual, the host is unable to clear the bacteria. One widely accepted hallmark of H. pylori is that it successfully and stealthily evades host defense mechanisms. Though the gastric mucosa is well protected against infection, H. pylori is able to reside under the mucus, attach to gastric epithelial cells and cause persistent infection by evading immune responses mediated by host. In this review, we discuss how H. pylori avoids innate and acquired immune response elements, uses gastric epithelial cells as mediators to manipulate host T cell responses and uses virulence factors to avoid adaptive immune responses by T cells to establish a persistent infection. We also discuss in this review how the genetic diversity of this pathogen helps for its survival.展开更多
Helicobacter pylori(H.pylori)are resistant to hostile gastric environments and antibiotic therapy,reflecting the possibility that they are protected by an ecological niche,such as inside the vacuoles of human epitheli...Helicobacter pylori(H.pylori)are resistant to hostile gastric environments and antibiotic therapy,reflecting the possibility that they are protected by an ecological niche,such as inside the vacuoles of human epithelial and immune cells.Candida yeast may also provide such an alternative niche,as fluorescently labeled H.pylori were observed as fast-moving and viable bacterium-like bodies inside the vacuoles of gastric,oral,vaginal and foodborne Candida yeasts.In addition,H.pylori-specific genes and proteins were detected in samples extracted from these yeasts.The H.pylori present within these yeasts produce peroxiredoxin and thiol peroxidase,providing the ability to detoxify oxygen metabolites formed in immune cells.Furthermore,these bacteria produce urease and VacA,two virulence determinants of H.pylori that influence phago-lysosome fusion and bacterial survival in macrophages.Microscopic observations of H.pylori cells in new generations of yeasts along with amplification of H.pylori-specific genes from consecutive generations indicate that new yeasts can inherit the intracellular H.pylori as part of their vacuolar content.Accordingly,it is proposed that yeast vacuoles serve as a sophisticated niche that protects H.pylori against the environmental stresses and provides essential nutrients,including ergosterol,for its growth and multiplication.This intracellular establishment inside the yeast vacuole likely occurred long ago,leading to the adaptation of H.pylori to persist in phagocytic cells.The presence of these bacteria within yeasts,including foodborne yeasts,along with the vertical transmission of yeasts from mother to neonate,provide explanations for the persistence and propagation of H.pylori in the human population.This Topic Highlight reviews and discusses recent evidence regarding the evolutionary adaptation of H.pylori to thrive in host cell vacuoles.展开更多
Helicobacter pylori(H.pylori)is a Gram-negative bacterium that infects about half of the world's population.H.pylori infection prevails by several mechanisms of adaptation of the bacteria and by its virulence fact...Helicobacter pylori(H.pylori)is a Gram-negative bacterium that infects about half of the world's population.H.pylori infection prevails by several mechanisms of adaptation of the bacteria and by its virulence factors including the cytotoxin associated antigen A(CagA).CagA is an oncoprotein that is the protagonist of gastric carcinogenesis associated with prolonged H.pylori infection.In this sense,small regulatory RNAs(sRNAs)are important macromolecules capable of inhibiting and activating gene expression.This function allows sRNAs to act in adjusting to unstable environmental conditions and in responding to cellular stresses in bacterial infections.Recent discoveries have shown that nickelregulated small RNA(NikS)is a post-transcriptional regulator of virulence properties of H.pylori,including the oncoprotein CagA.Notably,high concentrations of nickel cause the reduction of NikS expression and consequently this increases the levels of CagA.In addition,NikS expression appears to be lower in clinical isolates from patients with gastric cancer when compared to patients without.With that in mind,this minireview approaches,in an accessible way,the most important and current aspects about the role of NikS in the control of virulence factors of H.pylori and the potential clinical repercussions of this modulation.展开更多
BACKGROUND In recent years,associations between specific virulence markers of Helicobacter pylori(H.pylori)and gastrointestinal disorders have been suggested.AIM To investigate the presence of virulence factors includ...BACKGROUND In recent years,associations between specific virulence markers of Helicobacter pylori(H.pylori)and gastrointestinal disorders have been suggested.AIM To investigate the presence of virulence factors including vacuolating cytotoxin A genotypes(s1m1,s1m2,s2m1,and s2m2),cytotoxin-associated gene A(CagA),and urease activity in H.pylori strains isolated from Arab and Jewish populations in northern Israel and to assess associations between these factors and patients’demographics and clinical outcomes.METHODS Patients(n=108)who underwent gastroscopy at the Baruch Padeh Medical Center,Poriya due to symptomatic gastroduodenal pathologies as part of H.pylori diagnosis were enrolled in the study.Gastric biopsy specimens were collected from the antrum of the stomach.Clinical condition was assessed by clinical pathology tests.Bacteria were isolated on modified BD Helicobacter Agar(BD Diagnostics,Sparks,MD,United States).Bacterial DNA was extracted,and PCR was performed to detect CagA and vacuolating cytotoxin A genes.Urease activity was assessed using a rapid urease test.RESULTS A significant correlation was found between disease severity and patient ethnicity(P=0.002).A significant correlation was found between CagA presence and the s1m1 genotype(P=0.02),which is considered the most virulent genotype.Further,a higher level of urease activity was associated with isolates originating from the Jewish population.Moreover,higher urease activity levels were measured among CagA-/s1m1 and CagA-/s2m2 isolates.CONCLUSION Our study highlights the importance of incorporating molecular methods for detection of virulence markers of H.pylori in order to tailor optimal treatments for each patient.Further investigation should be performed regarding associations between H.pylori virulence factors and ethnicity.展开更多
Cytotoxic test in vitro combined with cytochemical stain, fluorescent stain, transmission electronmicrograph was used to study the vacuolated effect by helicobacter pylori (H.pylori) (Toxin+) and its pathological ...Cytotoxic test in vitro combined with cytochemical stain, fluorescent stain, transmission electronmicrograph was used to study the vacuolated effect by helicobacter pylori (H.pylori) (Toxin+) and its pathological mechanism. 78..26 % patients with peptic ulcer associated with H.pylori was infected with H.pylori (Toxin+), while 42.86 % patients with gastritis was infected with H.pylori (Toxin+). It was positive in vacuole with acridine orange and acid phosphatase stain. Transmission electronmicrograph of vacuole revealed the presence of abounding membrane. There was a closed relationship between infection with H.pylori (Toxin+) and peptic ulcer disease. The vacuole induced by H.pylori (Toxin+) was autophagosome, which was pathological phenomenon induced by toxin.展开更多
The Helicobacter pylori vacuolating cytotoxin (VacA) is an intracellular, mitochondrial-targeting exotoxin that rapidly causes mitochondrial dysfunction and fragmentation. Although VacA targeting of mitochondria has b...The Helicobacter pylori vacuolating cytotoxin (VacA) is an intracellular, mitochondrial-targeting exotoxin that rapidly causes mitochondrial dysfunction and fragmentation. Although VacA targeting of mitochondria has been reported to alter overall cellular metabolism, there is little known about the consequences of extended exposure to the toxin. Here, we describe studies to address this gap in knowledge, which have revealed that mitochondrial dysfunction and fragmentation are followed by a time-dependent recovery of mitochondrial structure, mitochondrial transmembrane potential, and cellular ATP levels. Cells exposed to VacA also initially demonstrated a reduction in oxidative phosphorylation, as well as increase in compensatory aerobic glycolysis. These metabolic alterations were reversed in cells with limited toxin exposure, congruent with the recovery of mitochondrial transmembrane potential and the absence of cytochrome c release from the mitochondria. Taken together, these results are consistent with a model that mitochondrial structure and function are restored in VacA-intoxicated cells.展开更多
H py/ori is probably the most prevalent human pathogen worldwide. Since it was initially suggested in 1983 by Marshall and Warren to be implicated in gastritis and peptic ulcer disease, H pylori has also been implicat...H py/ori is probably the most prevalent human pathogen worldwide. Since it was initially suggested in 1983 by Marshall and Warren to be implicated in gastritis and peptic ulcer disease, H pylori has also been implicated in gastric carcinoma and was classified as a class I carcinogen. In the last two decades, a noteworthy body of research has revealed the multiple processes that this gram negative bacterium activates to cause gastroduodenal disease in humans. Most infections are acquired early in life and may persist for the life of the individual. While infected individuals mount an inflammatory response that becomes chronic, along with a detectable adaptive immune response, these responses are ineffective in clearing the infection. Hpylori has unique features that allow it to reside within the harsh conditions of the gastric environment, and also to evade the host immune response. In this review, we discuss the various virulence factors expressed by this bacterium and how they interact with the host epithelium to influence pathogenesis.展开更多
BACKGROUND Approximately 90%of new cases of noncardiac gastric cancer(GC)are related to Helicobacter pylori(H.pylori),and cytotoxin-associated gene A(CagA)is one of the main pathogenic factors.Recent studies have show...BACKGROUND Approximately 90%of new cases of noncardiac gastric cancer(GC)are related to Helicobacter pylori(H.pylori),and cytotoxin-associated gene A(CagA)is one of the main pathogenic factors.Recent studies have shown that the pharmacological effects of cryptotanshinone(CTS)can be used to treat a variety of tumors.However,the effects of CTS on H.pylori,especially CagA+strain-induced gastric mucosal lesions,on the development of GC is unknown.AIM To assess the role of CTS in CagA-induced proliferation and metastasis of GC cells,and determine if CagA+H.pylori strains causes pathological changes in the gastric mucosa of mice.METHODS The effects of CTS on the proliferation of GC cells were assessed using the Cell Counting Kit-8(CCK-8)assay,and the abnormal growth,migration and invasion caused by CagA were detected by CCK-8 and transwell assays.After transfection with pSR-HA-CagA and treatment with CTS,proliferation and metastasis were evaluated by CCK-8 and transwell assays,respectively,and the expression of Src homology 2(SH2)domain–containing phosphatase 2(SHP2)and phosphorylated SHP2(p-SHP2)was detected using western blotting in AGS cells.The enzymelinked immunosorbent assay was used to determine the immunoglobulin G(IgG)level against CagA in patient serum.Mice were divided into four groups and administered H.pylori strains(CagA+or CagA-)and CTS(or PBS)intragastrically,and establishment of the chronic infection model was verified using polymerase chain reaction and sequencing of isolated strains.Hematoxylin and eosin staining was used to assess mucosal erosion in the stomach and toxicity to the liver and kidney.RESULTS CTS inhibited the growth of GC cells in dose-and time-dependent manners.Overexpression of CagA promoted the growth,migration,and invasion of GC cells.Importantly,we demonstrated that CTS significantly inhibited the CagAinduced abnormal proliferation,migration,and invasion of GC cells.Moreover,the expression of p-SHP2 protein in tumor tissue was related to the expression of IgG against CagA in the serum of GC patients.Additionally,CTS suppressed the protein expression levels of both SHP2 and p-SHP2 in GC cells.CTS suppressed CagA+H.pylori strain-induced mucosal erosion in the stomach of mice but had no obvious effects on the CagA-H.pylori strain group.CONCLUSION CTS inhibited CagA-induced proliferation and the epithelial-mesenchymal transition of GC cells in vitro,and CagA+H.pylori strains caused mucosal erosions of the stomach in vivo by decreasing the protein expression of SHP2.展开更多
目的探讨细胞毒素相关蛋白A(cytotoxin-associated protein A,CagA)阳性Hp感染与中年无症状人群颈动脉粥样硬化(carotid atherosclerosis,CAS)的相关性。方法选取在我院就诊的CAS患者578例作为CAS组,选取无CAS患者578例作为对照组,比较2...目的探讨细胞毒素相关蛋白A(cytotoxin-associated protein A,CagA)阳性Hp感染与中年无症状人群颈动脉粥样硬化(carotid atherosclerosis,CAS)的相关性。方法选取在我院就诊的CAS患者578例作为CAS组,选取无CAS患者578例作为对照组,比较2组CagA阳性Hp感染比例,并作Logistic回归分析。比较CagA阳性Hp感染患者与CagA阴性患者颈动脉内-中膜厚度(carotid intima-media thick-ness,CIMT)。结果CAS组CagA阳性Hp感染患者比例高于对照组(P<0.05)。CagA阳性Hp感染是CAS的独立危险因素(OR=1.813,95%CI:1.379~2.384,P<0.05)。CagA阳性Hp感染患者CIMT大于CagA阴性患者(t=28.046,P<0.05)。结论在中年无症状人群中,CagA阳性Hp感染是CAS的独立危险因素,CagA阳性Hp感染患者CIMT大于CagA阴性Hp感染患者。因此,CagA阳性Hp感染与CAS的发生、发展有关。展开更多
文摘AIM; To determine whether Helicobacter pylori (H pylon) vacuolating cytotoxin (VacA) regulates release of proinflammatory cytokines (IL-1β, IL-8, TNF-α, and IL-6) or alters gastric epithelial cell viability and to determine whether NaCl affects these VacA-induced changes. METHODS: Vacuolating activity was determined by measuring the uptake of neutral red into vacuoles of VacA-treated human gastric epithelial (AGS) cells. AGS cell viability was assessed by direct cell counting. Specific enzyme-linked immunosorbent assays (ELISA) and reverse transcdptase-polymerase chain reaction(RT-PCR) were performed to examine the effects of H pylori VacA and NaCl on cell pro-inflammatory cytokine production in AGS cells. Immunohistochemical staining of gastric tissue from Mongolian gerbils was used to confirm VacAinduced pro-inflammatory cytokine production and the effects of NaCl on this VacA-induced response. RESULTS: Addition of VacA alone reduced AGS cell viability (P〈 0.05), and this reduction was enhanced by high doses of NaCl (P〈0.05). VacA alone induced expression of TNF-α, IL-8 and IL-1β, while NaCl alone induced expression of TNF-α and IL-1β. Changes in mRNA levels in the presence of both VacA and NaCl were more complicated. For the case of TNF-α, expression was dosedependent on NaCl. IL-6 mRNA was not detected. However, low levels of IL-6 were detected by EUSA. Positive immunohistochemical staining of IL-1, IL-6, and TNF-α was found in gastric tissue of H pylori-infected gerbils fed with either a normal diet or a high salt diet. However, the staining of these three cytoldnes was sb'onger in H pylori-infected animals fed with a 5g/kg NaCl diet. CONCLUSION: VacA decreases the viability of AGS cells, and this effect can be enhanced by NaCl. NaCl also affects the production of pro-inflammatory cytokines in- duced by VacA, suggesting that NaCl plays an important role in Hpylori-induced gastric epithelial cell cytotoxicity.
基金Supported by Foundation of Scientific Technology Bureau of Zhejiang Province,No.2010C33118
文摘Helicobacter pylori(H.pylori)infection might initiate and contribute to the progression of lymphoma from gastric mucosa-associated lymphoid tissue(MALT).Increasing evidence shows that eradication of H.pylori with antibiotic therapy can lead to regression of gastric MALT lymphoma and can result in a 10-year sustained remission.The eradication of H.pylori is the standard care for patients with gastric MALT lymphoma.Cytotoxin-associated gene A(CagA)protein,one of the most extensively studied H.pylori virulence factors,is strongly associated with the gastric MALT lymphoma.CagA possesses polymorphisms according to its C-terminal structure and displays different functions among areas and races.After being translocated into B lymphocytes via typeⅣsecretion system,CagA deregulates intracellular signaling pathways in both tyrosine phosphorylation-dependent and-independent manners and/or some other pathways,and thereby promotes lymphomagenesis.A variety of proteins including p53and protein tyrosine phosphatases-2 are involved in the malignant transformation induced by CagA.Mucosal inflammation is the foundational mechanism underlying the occurrence and development of gastric MALT lymphoma.
基金Supported by The Italian Ministry of Health, Programma per la Ricerca Sanitaria 2007, Programma Strategico, Salute della donna/Area materno infantile, No. RFPS-2007-4-638281
文摘AIM: To better understand the pathogenic role of Helicobacter pylori (H. pylori) in pre-eclampsia (PE), and whether it is associated or not with fetal growth retardation (FGR). METHODS: Maternal blood samples were collected from 62 consecutive pregnant women with a diagnosis of PE and/or FGR, and from 49 women with uneventful pregnancies (controls). Serum samples were evaluated by immunoblot assay for presence of specific antibodies against H. pylori antigens [virulence: cytotoxin-associated antigen A (CagA); ureases; heat shock protein B; flagellin A; persistence: vacuolating cytotoxin A (VacA)]. Maternal complete blood count and liver enzymes levels were assessed at delivery by an automated analyzer. RESULTS: A significantly higher percentage of H. pyloriseropositive women were found among PE cases (85.7%) compared to controls (42.9%, P < 0.001). There were no differences between pregnancies complicated by FGR without maternal hypertension (46.2%) and controls. Importantly, persistent and virulent infections (VacA/ CagA seropositive patients, intermediate leukocyte blood count and aspartate aminotransferase levels) were exclusively associated with pre-eclampsia complicated by FGR, while virulent but acute infections (CagA positive/ VacA negative patients, highest leukocyte blood count and aspartate aminotransferase levels) specifically correlated with PE without FGR. CONCLUSION: Our data strongly indicate that persistent and virulent H. pylori infections cause or contribute to PE complicated by FGR, but not to PE without feto-placental compromise.
基金Supported by National Institutes of Health grants K22AI68712,R56DK090090-01American Gastroenterological Association Research Scholar Award,NIH 1U54RR02614+3 种基金The University of Texas Medical Branch Clinical and Translational Sciences AwardThe American cancer society RSG-10-159-01-LIB,NIH 8UL1TR000041The University of New Mexico clinical and Translational Science CenterTaslima T Lina is funded by Sealy Centre for Vaccine Development Pre-doctoral fellowship and McLaughlin Pre-doctoral Fellowship,UTMB
文摘Helicobacter pylori(H. pylori) is perhaps the most ubiquitous and successful human pathogen, since it colonizes the stomach of more than half of humankind. Infection with this bacterium is commonly acquired during childhood. Once infected, people carry the bacteria for decades or even for life, if not treated. Persistent infection with this pathogen causes gastritis, peptic ulcer disease and is also strongly associated with the development of gastric cancer. Despite induction of innate and adaptive immune responses in the infected individual, the host is unable to clear the bacteria. One widely accepted hallmark of H. pylori is that it successfully and stealthily evades host defense mechanisms. Though the gastric mucosa is well protected against infection, H. pylori is able to reside under the mucus, attach to gastric epithelial cells and cause persistent infection by evading immune responses mediated by host. In this review, we discuss how H. pylori avoids innate and acquired immune response elements, uses gastric epithelial cells as mediators to manipulate host T cell responses and uses virulence factors to avoid adaptive immune responses by T cells to establish a persistent infection. We also discuss in this review how the genetic diversity of this pathogen helps for its survival.
文摘Helicobacter pylori(H.pylori)are resistant to hostile gastric environments and antibiotic therapy,reflecting the possibility that they are protected by an ecological niche,such as inside the vacuoles of human epithelial and immune cells.Candida yeast may also provide such an alternative niche,as fluorescently labeled H.pylori were observed as fast-moving and viable bacterium-like bodies inside the vacuoles of gastric,oral,vaginal and foodborne Candida yeasts.In addition,H.pylori-specific genes and proteins were detected in samples extracted from these yeasts.The H.pylori present within these yeasts produce peroxiredoxin and thiol peroxidase,providing the ability to detoxify oxygen metabolites formed in immune cells.Furthermore,these bacteria produce urease and VacA,two virulence determinants of H.pylori that influence phago-lysosome fusion and bacterial survival in macrophages.Microscopic observations of H.pylori cells in new generations of yeasts along with amplification of H.pylori-specific genes from consecutive generations indicate that new yeasts can inherit the intracellular H.pylori as part of their vacuolar content.Accordingly,it is proposed that yeast vacuoles serve as a sophisticated niche that protects H.pylori against the environmental stresses and provides essential nutrients,including ergosterol,for its growth and multiplication.This intracellular establishment inside the yeast vacuole likely occurred long ago,leading to the adaptation of H.pylori to persist in phagocytic cells.The presence of these bacteria within yeasts,including foodborne yeasts,along with the vertical transmission of yeasts from mother to neonate,provide explanations for the persistence and propagation of H.pylori in the human population.This Topic Highlight reviews and discusses recent evidence regarding the evolutionary adaptation of H.pylori to thrive in host cell vacuoles.
基金Supported by CNPq Brazil (National Council for Scientific and Technological Development)-FFM,No. 317005/2021-09
文摘Helicobacter pylori(H.pylori)is a Gram-negative bacterium that infects about half of the world's population.H.pylori infection prevails by several mechanisms of adaptation of the bacteria and by its virulence factors including the cytotoxin associated antigen A(CagA).CagA is an oncoprotein that is the protagonist of gastric carcinogenesis associated with prolonged H.pylori infection.In this sense,small regulatory RNAs(sRNAs)are important macromolecules capable of inhibiting and activating gene expression.This function allows sRNAs to act in adjusting to unstable environmental conditions and in responding to cellular stresses in bacterial infections.Recent discoveries have shown that nickelregulated small RNA(NikS)is a post-transcriptional regulator of virulence properties of H.pylori,including the oncoprotein CagA.Notably,high concentrations of nickel cause the reduction of NikS expression and consequently this increases the levels of CagA.In addition,NikS expression appears to be lower in clinical isolates from patients with gastric cancer when compared to patients without.With that in mind,this minireview approaches,in an accessible way,the most important and current aspects about the role of NikS in the control of virulence factors of H.pylori and the potential clinical repercussions of this modulation.
基金The study was reviewed and approved by the Helsinki Committee of the Baruch Padeh Medical Center,Poriya(Approval No.POR 0007-20).
文摘BACKGROUND In recent years,associations between specific virulence markers of Helicobacter pylori(H.pylori)and gastrointestinal disorders have been suggested.AIM To investigate the presence of virulence factors including vacuolating cytotoxin A genotypes(s1m1,s1m2,s2m1,and s2m2),cytotoxin-associated gene A(CagA),and urease activity in H.pylori strains isolated from Arab and Jewish populations in northern Israel and to assess associations between these factors and patients’demographics and clinical outcomes.METHODS Patients(n=108)who underwent gastroscopy at the Baruch Padeh Medical Center,Poriya due to symptomatic gastroduodenal pathologies as part of H.pylori diagnosis were enrolled in the study.Gastric biopsy specimens were collected from the antrum of the stomach.Clinical condition was assessed by clinical pathology tests.Bacteria were isolated on modified BD Helicobacter Agar(BD Diagnostics,Sparks,MD,United States).Bacterial DNA was extracted,and PCR was performed to detect CagA and vacuolating cytotoxin A genes.Urease activity was assessed using a rapid urease test.RESULTS A significant correlation was found between disease severity and patient ethnicity(P=0.002).A significant correlation was found between CagA presence and the s1m1 genotype(P=0.02),which is considered the most virulent genotype.Further,a higher level of urease activity was associated with isolates originating from the Jewish population.Moreover,higher urease activity levels were measured among CagA-/s1m1 and CagA-/s2m2 isolates.CONCLUSION Our study highlights the importance of incorporating molecular methods for detection of virulence markers of H.pylori in order to tailor optimal treatments for each patient.Further investigation should be performed regarding associations between H.pylori virulence factors and ethnicity.
文摘Cytotoxic test in vitro combined with cytochemical stain, fluorescent stain, transmission electronmicrograph was used to study the vacuolated effect by helicobacter pylori (H.pylori) (Toxin+) and its pathological mechanism. 78..26 % patients with peptic ulcer associated with H.pylori was infected with H.pylori (Toxin+), while 42.86 % patients with gastritis was infected with H.pylori (Toxin+). It was positive in vacuole with acridine orange and acid phosphatase stain. Transmission electronmicrograph of vacuole revealed the presence of abounding membrane. There was a closed relationship between infection with H.pylori (Toxin+) and peptic ulcer disease. The vacuole induced by H.pylori (Toxin+) was autophagosome, which was pathological phenomenon induced by toxin.
文摘The Helicobacter pylori vacuolating cytotoxin (VacA) is an intracellular, mitochondrial-targeting exotoxin that rapidly causes mitochondrial dysfunction and fragmentation. Although VacA targeting of mitochondria has been reported to alter overall cellular metabolism, there is little known about the consequences of extended exposure to the toxin. Here, we describe studies to address this gap in knowledge, which have revealed that mitochondrial dysfunction and fragmentation are followed by a time-dependent recovery of mitochondrial structure, mitochondrial transmembrane potential, and cellular ATP levels. Cells exposed to VacA also initially demonstrated a reduction in oxidative phosphorylation, as well as increase in compensatory aerobic glycolysis. These metabolic alterations were reversed in cells with limited toxin exposure, congruent with the recovery of mitochondrial transmembrane potential and the absence of cytochrome c release from the mitochondria. Taken together, these results are consistent with a model that mitochondrial structure and function are restored in VacA-intoxicated cells.
基金the National Institutes of Health Grants DK50669and DK56338 EB was a recipient of a fellowship under NationaInstitutes of Health T32 AI007536-06 Training Grant. The costs ofpublication of this article were defrayed in part by the payment ofpage charges. The article must therefore be marked advertisemenin accordance with 18 U.S.C. section 1734 solely to indicate thisfact
文摘H py/ori is probably the most prevalent human pathogen worldwide. Since it was initially suggested in 1983 by Marshall and Warren to be implicated in gastritis and peptic ulcer disease, H pylori has also been implicated in gastric carcinoma and was classified as a class I carcinogen. In the last two decades, a noteworthy body of research has revealed the multiple processes that this gram negative bacterium activates to cause gastroduodenal disease in humans. Most infections are acquired early in life and may persist for the life of the individual. While infected individuals mount an inflammatory response that becomes chronic, along with a detectable adaptive immune response, these responses are ineffective in clearing the infection. Hpylori has unique features that allow it to reside within the harsh conditions of the gastric environment, and also to evade the host immune response. In this review, we discuss the various virulence factors expressed by this bacterium and how they interact with the host epithelium to influence pathogenesis.
基金National Natural Science Foundation of China,No.81572350。
文摘BACKGROUND Approximately 90%of new cases of noncardiac gastric cancer(GC)are related to Helicobacter pylori(H.pylori),and cytotoxin-associated gene A(CagA)is one of the main pathogenic factors.Recent studies have shown that the pharmacological effects of cryptotanshinone(CTS)can be used to treat a variety of tumors.However,the effects of CTS on H.pylori,especially CagA+strain-induced gastric mucosal lesions,on the development of GC is unknown.AIM To assess the role of CTS in CagA-induced proliferation and metastasis of GC cells,and determine if CagA+H.pylori strains causes pathological changes in the gastric mucosa of mice.METHODS The effects of CTS on the proliferation of GC cells were assessed using the Cell Counting Kit-8(CCK-8)assay,and the abnormal growth,migration and invasion caused by CagA were detected by CCK-8 and transwell assays.After transfection with pSR-HA-CagA and treatment with CTS,proliferation and metastasis were evaluated by CCK-8 and transwell assays,respectively,and the expression of Src homology 2(SH2)domain–containing phosphatase 2(SHP2)and phosphorylated SHP2(p-SHP2)was detected using western blotting in AGS cells.The enzymelinked immunosorbent assay was used to determine the immunoglobulin G(IgG)level against CagA in patient serum.Mice were divided into four groups and administered H.pylori strains(CagA+or CagA-)and CTS(or PBS)intragastrically,and establishment of the chronic infection model was verified using polymerase chain reaction and sequencing of isolated strains.Hematoxylin and eosin staining was used to assess mucosal erosion in the stomach and toxicity to the liver and kidney.RESULTS CTS inhibited the growth of GC cells in dose-and time-dependent manners.Overexpression of CagA promoted the growth,migration,and invasion of GC cells.Importantly,we demonstrated that CTS significantly inhibited the CagAinduced abnormal proliferation,migration,and invasion of GC cells.Moreover,the expression of p-SHP2 protein in tumor tissue was related to the expression of IgG against CagA in the serum of GC patients.Additionally,CTS suppressed the protein expression levels of both SHP2 and p-SHP2 in GC cells.CTS suppressed CagA+H.pylori strain-induced mucosal erosion in the stomach of mice but had no obvious effects on the CagA-H.pylori strain group.CONCLUSION CTS inhibited CagA-induced proliferation and the epithelial-mesenchymal transition of GC cells in vitro,and CagA+H.pylori strains caused mucosal erosions of the stomach in vivo by decreasing the protein expression of SHP2.