Omnidirectional dynamic space parameters of high-speed rotating helicopter blades are precise 3 D vector description of the blades. In particular, the elevation difference is directly related to the aerodynamic perfor...Omnidirectional dynamic space parameters of high-speed rotating helicopter blades are precise 3 D vector description of the blades. In particular, the elevation difference is directly related to the aerodynamic performance and maneuverability of the helicopter. The state of the art detection techniques based on optics and common vision have several drawbacks, such as high demands on devices but poor extensibility, limited measurement range and fixed measurement position. In this paper, a novel approach of helicopter blades running elevation measurement is proposed based on omnidirectional vision. With the advantages of panoramic visual imaging integration, 360° field of view and rotation in-variance, high-resolution images of all rotating blades positions are obtained at one time. By studying the non-linear calibration and calculation model of omnidirectional vision system, aiming at solving the problem of inaccurate visual space mapping model,the omnidirectional and full-scale measurement of the elevation difference are finalized. Experiments are carried out on our multifunctional simulation blades test system and the practical blades test tower, respectively. The experimental results demonstrate the effectiveness of the proposed method and show that the proposed method can considerably reduce the complexity of measurement.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.61673129,51674109)Natural Science Foundation of Heilongjiang Province of China(No.F201414)+2 种基金Harbin Application Research Funds(No.2016RQQXJ096)Fundamental Research Funds for the Central Universities(No.HEUCF041703)State Key Laboratory of Air Traffic Management System and Technology(No.SKLATM201708)
文摘Omnidirectional dynamic space parameters of high-speed rotating helicopter blades are precise 3 D vector description of the blades. In particular, the elevation difference is directly related to the aerodynamic performance and maneuverability of the helicopter. The state of the art detection techniques based on optics and common vision have several drawbacks, such as high demands on devices but poor extensibility, limited measurement range and fixed measurement position. In this paper, a novel approach of helicopter blades running elevation measurement is proposed based on omnidirectional vision. With the advantages of panoramic visual imaging integration, 360° field of view and rotation in-variance, high-resolution images of all rotating blades positions are obtained at one time. By studying the non-linear calibration and calculation model of omnidirectional vision system, aiming at solving the problem of inaccurate visual space mapping model,the omnidirectional and full-scale measurement of the elevation difference are finalized. Experiments are carried out on our multifunctional simulation blades test system and the practical blades test tower, respectively. The experimental results demonstrate the effectiveness of the proposed method and show that the proposed method can considerably reduce the complexity of measurement.