Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes d...Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes delineated by explicit optical characteristics,Monte Carlo simulations possess the theoretical capacity to render unparalleled accuracy in the depiction of exceedingly intricate phenomena.Nonetheless,the quintessential challenge associated with Monte Carlo simulation methodologies resides in their extended computational duration,which significantly impedes the refinement of their precision.Consequently,this discourse is specifically dedicated to exploring innovations in strategies and technologies aimed at expediting Monte Carlo simulations.It delves into the foundational concepts of various acceleration tactics,evaluates these strategies concerning their speed,accuracy,and practicality,and amalgamates a comprehensive overview and critique of acceleration methodologies for Monte Carlo simulations.Ultimately,the discourse envisages prospective trajectories for the employment of Monte Carlo techniques within the domain of tissue optics.展开更多
The electron transport properties in Ge are calculated by full band Monte Carlo technique with anisotropic scattering consideration.The calculation procedures are as follows:the full band structure is calculated by no...The electron transport properties in Ge are calculated by full band Monte Carlo technique with anisotropic scattering consideration.The calculation procedures are as follows:the full band structure is calculated by nonlocal empirical pseudopotential approach;the relative value of density of state (DOS) is computed by counting the number of states located in a certain region of the energy;the phonon dispersion curve is obtained from an adiabatic bond charge model;the electron phonon scattering rates are approximated by the nonparabolic model derived from Fermi’s golden rule at low energy region and scaled by DOS at higher energy region;the energy and momentum conservations are employed for choosing the final state after scattering.The validity of this Monte Carlo simulator and the physical models that are used is fully confirmed by comparing the program output to experimental results listed in references.As this Monte Carlo model can accurately reproduce the velocity and energy characteristics of electrons in Ge and the DOS scaled scattering rate can significantly reduce the computational cost for scattering rates,this approach is suitable for device simulation.展开更多
When multiphysics coupling calculations contain time-dependent Monte Carlo particle transport simulations, these simulations often account for the largest part of the calculation time, which is insufferable in certain...When multiphysics coupling calculations contain time-dependent Monte Carlo particle transport simulations, these simulations often account for the largest part of the calculation time, which is insufferable in certain important cases. This study proposes an adaptive strategy for automatically adjusting the sample size to fulfil more reasonable simulations. This is realized based on an extension of the Shannon entropy concept and is essentially different from the popular methods in timeindependent Monte Carlo particle transport simulations, such as controlling the sample size according to the relative error of a target tally or by experience. The results of the two models show that this strategy can yield almost similar results while significantly reducing the calculation time. Considering the efficiency, the sample size should not be increased blindly if the efficiency cannot be enhanced further. The strategy proposed herein satisfies this requirement.展开更多
The reflection of light ions, such as H+,3He+ and 4He+, with energies of 0.1- 10 keV, from Cu and Ni surface has been studied by Monte Carlo simulation and transport theory. The Monte Carlo simulation gives the detail...The reflection of light ions, such as H+,3He+ and 4He+, with energies of 0.1- 10 keV, from Cu and Ni surface has been studied by Monte Carlo simulation and transport theory. The Monte Carlo simulation gives the detail energy spectra for the reflected particles and their angular distribution for different incident angles. It shows that the reflected particle energy spectra can be approximately described by an analytical formula for the whole energy range, all the incident angles and different ion- target combination studied here. The reflected particle energy vs its average reflection angle to the surface normal can almost be expressed by a universal curve for all cases studied here. The reflection energy spectra are used for the calculation of the reflection coefficient by transport theory including the realistic surface correction. The present work is compared with both experimental measurement and other simulation codes.展开更多
The steady-state and transient electron transport properties ofβ-(Al_(x)Ga_(1-x))_(2)O_(3)/Ga_(2)O_(3)heterostructures were investigated by Monte Carlo simulation with the classic three-valley model.In particular,the...The steady-state and transient electron transport properties ofβ-(Al_(x)Ga_(1-x))_(2)O_(3)/Ga_(2)O_(3)heterostructures were investigated by Monte Carlo simulation with the classic three-valley model.In particular,the electronic band structures were acquired by first-principles calculations,which could provide precise parameters for calculating the transport properties of the two-dimensional electron gas(2DEG),and the quantization effect was considered in theΓvalley with the five lowest subbands.Wave functions and energy eigenvalues were obtained by iteration of the Schrödinger–Poisson equations to calculate the 2DEG scattering rates with five main scattering mechanisms considered.The simulated low-field electron mobilities agree well with the experimental results,thus confirming the effectiveness of our models.The results show that the room temperature electron mobility of theβ-(Al_(0.188)Ga_(0.812))_(2)O_(3)/Ga_(2)O_(3)heterostructure at 10 k V·cm^(-1)is approximately153.669 cm^(2)·V^(-1)·s^(-1),and polar optical phonon scattering would have a significant impact on the mobility properties at this time.The region of negative differential mobility,overshoot of the transient electron velocity and negative diffusion coefficients are also observed when the electric field increases to the corresponding threshold value or even exceeds it.This work offers significant parameters for theβ-(Al_(x)Ga_(1-x))_(2)O_(3)/Ga_(2)O_(3)heterostructure that may benefit the design of high-performanceβ-(Al_(x)Ga_(1-x))_(2)O_(3)/Ga_(2)O_(3)heterostructure-based devices.展开更多
We present a graphics processing unit(GPU)cluster-based Monte Carlo simulation of photon transport in multi-layered tissues.The cluster is composed of multiple computing nodes in a local area network where each node i...We present a graphics processing unit(GPU)cluster-based Monte Carlo simulation of photon transport in multi-layered tissues.The cluster is composed of multiple computing nodes in a local area network where each node is a personal computer equipped with one or several GPU(s)for parallel computing.In this study,the MPI(Message Passing Interface),the OpenMP(Open Multi-Processing)and the CUDA(Compute Unified Device Architecture)technologies are employed to develop the program.It is demonstrated that this designing runs roughly N times faster than that using single GPU when the GPUs within the cluster are of the same type,where N is the total number of the GPUs within the cluster.展开更多
An ensemble Monte Carlosimulation is used to compare high field electron transport in bulk InAs, InP and GaAs. In particular, velocity overshoot and electron transit times are examined. For all materials, we find that...An ensemble Monte Carlosimulation is used to compare high field electron transport in bulk InAs, InP and GaAs. In particular, velocity overshoot and electron transit times are examined. For all materials, we find that electron velocity overshoot only occurs when the electric field is increased to a value above a certain critical field, unique to each material. This critical field is strongly dependent on the material, about 3 kV/cm for InAs, 10 kV/cm for InP and 5 kV/cm for the case of GaAs, We find that InAs exhibits the highest peak overshoot velocity and that this velocity overshoot lasts over the longest distances when compared with GaAs and InP. Finally, we estimate the minimum transit time across a 1 μm InAs sample to be about 2 ps. Similar calculations for InP and GaAs yield 6.6 and 5.4 ps, respectively. We find that the optimal cutoff frequency for an ideal InAs based device ranges from around 79 GHz when the device thickness is set to 1 μm. We thus suggest that indium arsenide offers great promise for future high-speed device applications. The steady-state and transient velocity overshoot characteristics are in fair agreement with other recent calculations.展开更多
The Monte Carlo simulators with the three valley model and the full band Monte Carlo model are used to explore electron transport in bulk wurtzite gallium nitride (GaN).Comparison of the results based on the two mode...The Monte Carlo simulators with the three valley model and the full band Monte Carlo model are used to explore electron transport in bulk wurtzite gallium nitride (GaN).Comparison of the results based on the two models is made.The results based on both models are basically the same at the lower field region,but exhibit some differences at the higher field region.The electron average energy exhibits obvious difference at the high field region between the two models.This difference further causes several other differences of GaN properties,such as the drift velocity versus field characteristics,the repopulation.Because of the complicated energy band structures at the high energy region for wurtzite GaN,the analytical band structures in the three valley model can not cover all properties of the band structures of wurtzite GaN,so the results based on the full band Monte Carlo model should be more exact.展开更多
A Monte Carlo simulation method with an instantaneous density dependent meanfree-path of the ablated particles and the Ar gas is developed for investigating the transport dynamics of the laser-ablated particles in a l...A Monte Carlo simulation method with an instantaneous density dependent meanfree-path of the ablated particles and the Ar gas is developed for investigating the transport dynamics of the laser-ablated particles in a low pressure inert gas.The ablated-particle density and velocity distributions are analyzed.The force distributions acting on the ablated particles are investigated.The influence of the substrate on the ablated-particle velocity distribution and the force distribution acting on the ablated particles are discussed.The Monte Carlo simulation results approximately agree with the experimental data at the pressure of 8 Pa to 17 Pa.This is helpful to investigate the gas phase nucleation and growth mechanism of nanoparticles.展开更多
Path integral Monte Carlo (PIMC) simulations are a powerful computational method to study interacting quantum systems at finite temperatures. In this work, PIMC has been applied to study the finite size effect of th...Path integral Monte Carlo (PIMC) simulations are a powerful computational method to study interacting quantum systems at finite temperatures. In this work, PIMC has been applied to study the finite size effect of the simulated systems of ^4He. We determine the energy as a function of temperature at saturated-vapor-pressure (SVP) conditions in the temperature range of T ∈ [1.0 K,4.0 K], and the equation of state (EOS) in the grmmd state For systems consisted of 32, 64 and 128 ^4He atoms, respectively, We find that the energy at SVP is influenced significantly by the size of the simulated system in the temperature range of T ∈ [2.1 K, 3.0 K] and the larger the system is, the better results are obtained in comparison with the experimental values; while the EOS appeared to be unrelated to it.展开更多
We have faced the challenge of developing a tool devoted to simulate the transport of photons and accelerated particles(ionizing radiation entities)inside matter,where the choice of transporting medium shall be free f...We have faced the challenge of developing a tool devoted to simulate the transport of photons and accelerated particles(ionizing radiation entities)inside matter,where the choice of transporting medium shall be free for the user and non-homogeneities shall be modeled and managed.The solution has been a project that exploits fully statistical Monte Carlo approach,employing a digitalizing board to produce random samples.The system heredities many concepts from electronics devices simulators,but it finds different applications and we present one of them for effectiveness demonstration.展开更多
The current demand growth of new components capable of operating at high power, high frequency, high temperatures and convergence towards miniaturization has lead to the development of new fields of nanotechnology bas...The current demand growth of new components capable of operating at high power, high frequency, high temperatures and convergence towards miniaturization has lead to the development of new fields of nanotechnology based on II-VI semiconductor Interest in nanostructure:s based on II-VI semiconductor narrow gap containing mercury (such as super lattices HgTe/CdTe) was due to their advantages over alloys with cadmium telluride Mercury (MCT: HgCdTe). The ternary alloy is a semiconductor band-gap direct, in that work the main interest is about the ternary compound. The results obtained are very satisfactory, they are compared with experimental results, and are in good agreement. These results are very promising and open new perspectives for the realization of solar cells and applications in the field of sensors.展开更多
The following article has been retracted due to the investigation of complaints received against it. Mr. Mohammadali Ghorbani (corresponding author and also the last author) cheated the author’s name: Alireza Heidari...The following article has been retracted due to the investigation of complaints received against it. Mr. Mohammadali Ghorbani (corresponding author and also the last author) cheated the author’s name: Alireza Heidari. The scientific community takes a very strong view on this matter and we treat all unethical behavior such as plagiarism seriously. This paper published in Vol.3 No.3, 260-265, 2012, has been removed from this site.展开更多
Accurate prediction of junction temperature is crucial for the efficient thermal design of silicon nano-devices. In nano-scale semiconductor devices, significant ballistic effects occur due to the mean free path of ph...Accurate prediction of junction temperature is crucial for the efficient thermal design of silicon nano-devices. In nano-scale semiconductor devices, significant ballistic effects occur due to the mean free path of phonons comparable to the heat source size and device scale. We employ a three-dimensional non-gray Monte Carlo simulation to investigate the transient heat conduction of silicon nanofilms with both single and multiple heat sources. The accuracy of the present method is first verified in the ballistic and diffusion limits. When a single local heat source is present, the width of the heat source has a significant impact on heat conduction in the domain. Notably, there is a substantial temperature jump at the boundary when the heat source width is 10 nm.With increasing heat source width, the boundary temperature jump weakens. Furthermore, we observe that the temperature excitation rate is independent of the heat source width, while the temperature influence range expands simultaneously with the increase in heat source width. Around 500 ps, the temperature and heat flux distribution in the domain stabilize. In the case of dual heat sources, the hot zone is broader than that of a single heat source, and the temperature of the hot spot decreases as the heat source spacing increases. However, the mean heat flux remains unaffected. Upon reaching a spacing of 200 nm between the heat sources, the peak temperature in the domain remains unchanged once a steady state is reached. These findings hold significant implications for the thermal design of silicon nano-devices with local heat sources.展开更多
We demonstrate a two-dimensional(2D) full-band ensemble Monte-Carlo simulator for heterostructures, which deals with carrier transport in two different semiconductor materials simultaneously as well as at the bounda...We demonstrate a two-dimensional(2D) full-band ensemble Monte-Carlo simulator for heterostructures, which deals with carrier transport in two different semiconductor materials simultaneously as well as at the boundary by solving self-consistently the 2D Poisson and Boltzmann transport equations(BTE).The infrastructure of this simulator,including the energy bands obtained from the empirical pseudo potential method,various scattering mechanics employed,and the appropriate treatment of the carrier transport at the boundary between two different semiconductor materials,is also described.As verification and calibration,we have performed a simulation on two types of silicon-germanium(Si-Ge) heterojunctions with different doping profiles—the p-p homogeneous type and the n-p inhomogeneous type.The current-voltage characteristics are simulated,and the distributions of potential and carrier density are also plotted,which show the validity of our simulator.展开更多
基金funded by the Chinese Academy of Medical Science health innovation project(grant nos.2021-I2M-1-042,2021-I2M-1-058,and 2022-I2M-C&T-A-005)Tianjin Outstanding Youth Fund Project(grant no.20JCJQIC00230)CAMS Innovation Fund for Medical Sciences(CIFMS)(grant no.2022-I2M-C&T-B-012).
文摘Monte Carlo simulation techniques have become the quintessence and a pivotal nexus of inquiry in the realm of simulating photon movement within biological fabrics.Through the stochastic sampling of tissue archetypes delineated by explicit optical characteristics,Monte Carlo simulations possess the theoretical capacity to render unparalleled accuracy in the depiction of exceedingly intricate phenomena.Nonetheless,the quintessential challenge associated with Monte Carlo simulation methodologies resides in their extended computational duration,which significantly impedes the refinement of their precision.Consequently,this discourse is specifically dedicated to exploring innovations in strategies and technologies aimed at expediting Monte Carlo simulations.It delves into the foundational concepts of various acceleration tactics,evaluates these strategies concerning their speed,accuracy,and practicality,and amalgamates a comprehensive overview and critique of acceleration methodologies for Monte Carlo simulations.Ultimately,the discourse envisages prospective trajectories for the employment of Monte Carlo techniques within the domain of tissue optics.
文摘The electron transport properties in Ge are calculated by full band Monte Carlo technique with anisotropic scattering consideration.The calculation procedures are as follows:the full band structure is calculated by nonlocal empirical pseudopotential approach;the relative value of density of state (DOS) is computed by counting the number of states located in a certain region of the energy;the phonon dispersion curve is obtained from an adiabatic bond charge model;the electron phonon scattering rates are approximated by the nonparabolic model derived from Fermi’s golden rule at low energy region and scaled by DOS at higher energy region;the energy and momentum conservations are employed for choosing the final state after scattering.The validity of this Monte Carlo simulator and the physical models that are used is fully confirmed by comparing the program output to experimental results listed in references.As this Monte Carlo model can accurately reproduce the velocity and energy characteristics of electrons in Ge and the DOS scaled scattering rate can significantly reduce the computational cost for scattering rates,this approach is suitable for device simulation.
基金supported by the CAEP Found (No.CX20200028)Youth Program of National Natural Science Foundation of China (No.11705011).
文摘When multiphysics coupling calculations contain time-dependent Monte Carlo particle transport simulations, these simulations often account for the largest part of the calculation time, which is insufferable in certain important cases. This study proposes an adaptive strategy for automatically adjusting the sample size to fulfil more reasonable simulations. This is realized based on an extension of the Shannon entropy concept and is essentially different from the popular methods in timeindependent Monte Carlo particle transport simulations, such as controlling the sample size according to the relative error of a target tally or by experience. The results of the two models show that this strategy can yield almost similar results while significantly reducing the calculation time. Considering the efficiency, the sample size should not be increased blindly if the efficiency cannot be enhanced further. The strategy proposed herein satisfies this requirement.
基金The Project Supported by the National Natural Science Foundation of China
文摘The reflection of light ions, such as H+,3He+ and 4He+, with energies of 0.1- 10 keV, from Cu and Ni surface has been studied by Monte Carlo simulation and transport theory. The Monte Carlo simulation gives the detail energy spectra for the reflected particles and their angular distribution for different incident angles. It shows that the reflected particle energy spectra can be approximately described by an analytical formula for the whole energy range, all the incident angles and different ion- target combination studied here. The reflected particle energy vs its average reflection angle to the surface normal can almost be expressed by a universal curve for all cases studied here. The reflection energy spectra are used for the calculation of the reflection coefficient by transport theory including the realistic surface correction. The present work is compared with both experimental measurement and other simulation codes.
基金Project supported by the National Natural Science Foundation of China(Grant No.61474090)the Key Research and Development Program of Shaanxi Province of China(Grant No.2017ZDXM-GY-052)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.20109205456)the Innovation Fund of Xidian University。
文摘The steady-state and transient electron transport properties ofβ-(Al_(x)Ga_(1-x))_(2)O_(3)/Ga_(2)O_(3)heterostructures were investigated by Monte Carlo simulation with the classic three-valley model.In particular,the electronic band structures were acquired by first-principles calculations,which could provide precise parameters for calculating the transport properties of the two-dimensional electron gas(2DEG),and the quantization effect was considered in theΓvalley with the five lowest subbands.Wave functions and energy eigenvalues were obtained by iteration of the Schrödinger–Poisson equations to calculate the 2DEG scattering rates with five main scattering mechanisms considered.The simulated low-field electron mobilities agree well with the experimental results,thus confirming the effectiveness of our models.The results show that the room temperature electron mobility of theβ-(Al_(0.188)Ga_(0.812))_(2)O_(3)/Ga_(2)O_(3)heterostructure at 10 k V·cm^(-1)is approximately153.669 cm^(2)·V^(-1)·s^(-1),and polar optical phonon scattering would have a significant impact on the mobility properties at this time.The region of negative differential mobility,overshoot of the transient electron velocity and negative diffusion coefficients are also observed when the electric field increases to the corresponding threshold value or even exceeds it.This work offers significant parameters for theβ-(Al_(x)Ga_(1-x))_(2)O_(3)/Ga_(2)O_(3)heterostructure that may benefit the design of high-performanceβ-(Al_(x)Ga_(1-x))_(2)O_(3)/Ga_(2)O_(3)heterostructure-based devices.
基金This work is supported by the program for New Century Excellent Talents in University(Grant No.NCET-08-0213)Science Fund for Creative Research Group of China(Grant No.61121004)+1 种基金the National Natural Science Foundation of China(Grant Nos.30970964,30800339,30801482,and 30800313)the Ph.D.Programs Foundation of Ministry of Education of China(Grant No.20090142110054).
文摘We present a graphics processing unit(GPU)cluster-based Monte Carlo simulation of photon transport in multi-layered tissues.The cluster is composed of multiple computing nodes in a local area network where each node is a personal computer equipped with one or several GPU(s)for parallel computing.In this study,the MPI(Message Passing Interface),the OpenMP(Open Multi-Processing)and the CUDA(Compute Unified Device Architecture)technologies are employed to develop the program.It is demonstrated that this designing runs roughly N times faster than that using single GPU when the GPUs within the cluster are of the same type,where N is the total number of the GPUs within the cluster.
文摘An ensemble Monte Carlosimulation is used to compare high field electron transport in bulk InAs, InP and GaAs. In particular, velocity overshoot and electron transit times are examined. For all materials, we find that electron velocity overshoot only occurs when the electric field is increased to a value above a certain critical field, unique to each material. This critical field is strongly dependent on the material, about 3 kV/cm for InAs, 10 kV/cm for InP and 5 kV/cm for the case of GaAs, We find that InAs exhibits the highest peak overshoot velocity and that this velocity overshoot lasts over the longest distances when compared with GaAs and InP. Finally, we estimate the minimum transit time across a 1 μm InAs sample to be about 2 ps. Similar calculations for InP and GaAs yield 6.6 and 5.4 ps, respectively. We find that the optimal cutoff frequency for an ideal InAs based device ranges from around 79 GHz when the device thickness is set to 1 μm. We thus suggest that indium arsenide offers great promise for future high-speed device applications. The steady-state and transient velocity overshoot characteristics are in fair agreement with other recent calculations.
文摘The Monte Carlo simulators with the three valley model and the full band Monte Carlo model are used to explore electron transport in bulk wurtzite gallium nitride (GaN).Comparison of the results based on the two models is made.The results based on both models are basically the same at the lower field region,but exhibit some differences at the higher field region.The electron average energy exhibits obvious difference at the high field region between the two models.This difference further causes several other differences of GaN properties,such as the drift velocity versus field characteristics,the repopulation.Because of the complicated energy band structures at the high energy region for wurtzite GaN,the analytical band structures in the three valley model can not cover all properties of the band structures of wurtzite GaN,so the results based on the full band Monte Carlo model should be more exact.
基金supported by the Natural Science Foundation of Hebei Province,China(No.A2015201166)the Natural Science Foundation of Hebei University,China(No.2013-252)
文摘A Monte Carlo simulation method with an instantaneous density dependent meanfree-path of the ablated particles and the Ar gas is developed for investigating the transport dynamics of the laser-ablated particles in a low pressure inert gas.The ablated-particle density and velocity distributions are analyzed.The force distributions acting on the ablated particles are investigated.The influence of the substrate on the ablated-particle velocity distribution and the force distribution acting on the ablated particles are discussed.The Monte Carlo simulation results approximately agree with the experimental data at the pressure of 8 Pa to 17 Pa.This is helpful to investigate the gas phase nucleation and growth mechanism of nanoparticles.
基金National Natural Science Foundation of China and the China Academy of Engineering Physics under Grant No.10676025(NSAF)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,the Ministry of Education
文摘Path integral Monte Carlo (PIMC) simulations are a powerful computational method to study interacting quantum systems at finite temperatures. In this work, PIMC has been applied to study the finite size effect of the simulated systems of ^4He. We determine the energy as a function of temperature at saturated-vapor-pressure (SVP) conditions in the temperature range of T ∈ [1.0 K,4.0 K], and the equation of state (EOS) in the grmmd state For systems consisted of 32, 64 and 128 ^4He atoms, respectively, We find that the energy at SVP is influenced significantly by the size of the simulated system in the temperature range of T ∈ [2.1 K, 3.0 K] and the larger the system is, the better results are obtained in comparison with the experimental values; while the EOS appeared to be unrelated to it.
文摘We have faced the challenge of developing a tool devoted to simulate the transport of photons and accelerated particles(ionizing radiation entities)inside matter,where the choice of transporting medium shall be free for the user and non-homogeneities shall be modeled and managed.The solution has been a project that exploits fully statistical Monte Carlo approach,employing a digitalizing board to produce random samples.The system heredities many concepts from electronics devices simulators,but it finds different applications and we present one of them for effectiveness demonstration.
文摘The current demand growth of new components capable of operating at high power, high frequency, high temperatures and convergence towards miniaturization has lead to the development of new fields of nanotechnology based on II-VI semiconductor Interest in nanostructure:s based on II-VI semiconductor narrow gap containing mercury (such as super lattices HgTe/CdTe) was due to their advantages over alloys with cadmium telluride Mercury (MCT: HgCdTe). The ternary alloy is a semiconductor band-gap direct, in that work the main interest is about the ternary compound. The results obtained are very satisfactory, they are compared with experimental results, and are in good agreement. These results are very promising and open new perspectives for the realization of solar cells and applications in the field of sensors.
文摘The following article has been retracted due to the investigation of complaints received against it. Mr. Mohammadali Ghorbani (corresponding author and also the last author) cheated the author’s name: Alireza Heidari. The scientific community takes a very strong view on this matter and we treat all unethical behavior such as plagiarism seriously. This paper published in Vol.3 No.3, 260-265, 2012, has been removed from this site.
基金supported by the National Natural Science Foundation of China (Grant No. 52076088)the Core Technology Research Project of Shunde District, Foshan, China (Grant No. 2130218002932)。
文摘Accurate prediction of junction temperature is crucial for the efficient thermal design of silicon nano-devices. In nano-scale semiconductor devices, significant ballistic effects occur due to the mean free path of phonons comparable to the heat source size and device scale. We employ a three-dimensional non-gray Monte Carlo simulation to investigate the transient heat conduction of silicon nanofilms with both single and multiple heat sources. The accuracy of the present method is first verified in the ballistic and diffusion limits. When a single local heat source is present, the width of the heat source has a significant impact on heat conduction in the domain. Notably, there is a substantial temperature jump at the boundary when the heat source width is 10 nm.With increasing heat source width, the boundary temperature jump weakens. Furthermore, we observe that the temperature excitation rate is independent of the heat source width, while the temperature influence range expands simultaneously with the increase in heat source width. Around 500 ps, the temperature and heat flux distribution in the domain stabilize. In the case of dual heat sources, the hot zone is broader than that of a single heat source, and the temperature of the hot spot decreases as the heat source spacing increases. However, the mean heat flux remains unaffected. Upon reaching a spacing of 200 nm between the heat sources, the peak temperature in the domain remains unchanged once a steady state is reached. These findings hold significant implications for the thermal design of silicon nano-devices with local heat sources.
基金Project supported by the National Fundamental Basic Research Program of China(No.2006CB302705)the Foundation for Key Program Project of Chinese Ministry of Education(No.107003).
文摘We demonstrate a two-dimensional(2D) full-band ensemble Monte-Carlo simulator for heterostructures, which deals with carrier transport in two different semiconductor materials simultaneously as well as at the boundary by solving self-consistently the 2D Poisson and Boltzmann transport equations(BTE).The infrastructure of this simulator,including the energy bands obtained from the empirical pseudo potential method,various scattering mechanics employed,and the appropriate treatment of the carrier transport at the boundary between two different semiconductor materials,is also described.As verification and calibration,we have performed a simulation on two types of silicon-germanium(Si-Ge) heterojunctions with different doping profiles—the p-p homogeneous type and the n-p inhomogeneous type.The current-voltage characteristics are simulated,and the distributions of potential and carrier density are also plotted,which show the validity of our simulator.