We apply the fast multipole method (FMM) accelerated boundary element method (BEM) for the three-dimensional (3D) Helmholtz equation, and as a result, large-scale acoustic scattering problems involving 400000 elements...We apply the fast multipole method (FMM) accelerated boundary element method (BEM) for the three-dimensional (3D) Helmholtz equation, and as a result, large-scale acoustic scattering problems involving 400000 elements are solved efficiently. This is an extension of the fast multipole BEM for two-dimensional (2D) acoustic problems developed by authors recently. Some new improvements are obtained. In this new technique, the improved Burton-Miller formulation is employed to over-come non-uniqueness difficulties in the conventional BEM for exterior acoustic problems. The computational efficiency is further improved by adopting the FMM and the block diagonal preconditioner used in the generalized minimum residual method (GMRES) iterative solver to solve the system matrix equation. Numerical results clearly demonstrate the complete reliability and efficiency of the proposed algorithm. It is potentially useful for solving large-scale engineering acoustic scattering problems.展开更多
In this paper, we study, via variational methods, the problem of scattering of time harmonic acoustic waves by unbounded inhomogeneous layers above a sound soft rough surface. We first propose a variational formulatio...In this paper, we study, via variational methods, the problem of scattering of time harmonic acoustic waves by unbounded inhomogeneous layers above a sound soft rough surface. We first propose a variational formulation and exploit it as a theoretical tool to prove the well-posedness of this problem when the media is non-absorbing for arbitrary wave number and obtain an estimate about the solution, which exhibit explicitly dependence of bound on the wave number and on the geometry of the domain. Then, based on the non-absorbing results, we show that the variational problem remains uniquely solvable when the layer is absorbing by means of a priori estimate of the solution. Finally, we consider the finite element approximation of the problem and give an error estimate.展开更多
In this work,we develop a stochastic gradient descent method for the computational optimal design of random rough surfaces in thin-film solar cells.We formulate the design problems as random PDE-constrained optimizati...In this work,we develop a stochastic gradient descent method for the computational optimal design of random rough surfaces in thin-film solar cells.We formulate the design problems as random PDE-constrained optimization problems and seek the optimal statistical parameters for the random surfaces.The optimizations at fixed frequency as well as at multiple frequencies and multiple incident angles are investigated.To evaluate the gradient of the objective function,we derive the shape derivatives for the interfaces and apply the adjoint state method to perform the computation.The stochastic gradient descent method evaluates the gradient of the objective function only at a few samples for each iteration,which reduces the computational cost significantly.Various numerical experiments are conducted to illustrate the efficiency of the method and significant increases of the absorptance for the optimal random structures.We also examine the convergence of the stochastic gradient descent algorithm theoretically and prove that the numerical method is convergent under certain assumptions for the random interfaces.展开更多
The Time-Domain-Integral-Equation (TDIE) method is proposed to analyze transient scattering interaction between a two-dimensional infinitely long conducting target with an arbitrary cross section and a one-dimensional...The Time-Domain-Integral-Equation (TDIE) method is proposed to analyze transient scattering interaction between a two-dimensional infinitely long conducting target with an arbitrary cross section and a one-dimensional rough surface. Based on the electric-field-integral-equation in time domain, the explicit and implicit solutions of MOT (Marching-on-time) are derived and presented. The current response at the center of the rough surface and the far electric field response with time in the composite model are calculated and analyzed. The numerical results are compared and verified with those obtained by conventional MOM-IDFT (Method of Moment-inverse discrete Fourier transform). Finally, the influence of the size, the location of the target and the incident angle on the current response and the far electric fields response are discussed in detail.展开更多
This paper gives a brief survey of recent developments on mathematical modeling and analysis of the open cavity scattering problems, which arise in diverse scientific areas and have significant industrial and military...This paper gives a brief survey of recent developments on mathematical modeling and analysis of the open cavity scattering problems, which arise in diverse scientific areas and have significant industrial and military applications. The scattering problems are studied for the two-dimensional Helmholtz equation corresponding to the transverse magnetic or electric polarization, and the three-dimensional time-harmonic and time-domain Maxwell equations. Since these problems are imposed in open domains, a key step of the analysis is to develop transparent boundary conditions and reformulate them equivalently into boundary value problems in bounded domains. The well-posedness of weak solutions are shown for the associated variational problems by using either the Lax-Milgram theorem or the Fredholm alternative.展开更多
The inverse problem considered in this paper is to determine the shape and the impedance of crack from a knowledge of the time-harmonic incident field and the corresponding far field pattern of the scattered waves in ...The inverse problem considered in this paper is to determine the shape and the impedance of crack from a knowledge of the time-harmonic incident field and the corresponding far field pattern of the scattered waves in two-dimension.The combined single-and double-layer potential is used to approach the scattered waves.As an important feature,this method does not require the solution of u and δu/δv at each iteration.An approximate method is presented and the convergence of this method is proven.Numerical examples are given to show that this method is both accurate and simple to use.展开更多
The present paper is concerned with scattering of water waves from a vertical plate, modeled as an elastic plate, submerged in deep water covered with a thin uniform sheet of ice. The problem is formulated in terms of...The present paper is concerned with scattering of water waves from a vertical plate, modeled as an elastic plate, submerged in deep water covered with a thin uniform sheet of ice. The problem is formulated in terms of a hypersingular integral equation by a suitable application of Green's integral theorem in terms of difference of potential functicns across the barrier. This integral equation is solved by a collocation method using a finite series involving Chebyshev polynomials. Reflection and transmission coefficients are obtained numerically and presented graphically for various values of the wave number and ice-cover parameter.展开更多
In this paper,we consider the inverse acoustic scattering problem by an unbounded rough surface.A direct imaging method is proposed to reconstruct the rough surfaces from scattered-field data for incident plane waves ...In this paper,we consider the inverse acoustic scattering problem by an unbounded rough surface.A direct imaging method is proposed to reconstruct the rough surfaces from scattered-field data for incident plane waves and the performance analysis is also presented.The reconstruction method is very robust to noises of measured data and does’t need to know the type of the boundary conditions of the surfaces in advance.Finally,numerical examples are carried out to illustrate that our method is fast,accurate and stable even for the case of multiple-scale profiles.展开更多
A new method to solve the boundary value problem arising in the study of scattering of two-dimensional surface water waves by a discontinuity in the surface boundary conditions is presented in this paper. The disconti...A new method to solve the boundary value problem arising in the study of scattering of two-dimensional surface water waves by a discontinuity in the surface boundary conditions is presented in this paper. The discontinuity arises due to the floating of two semi-infinite inertial surfaces of different surface densities. Applying Green's second identity to the potential functions and appropriate Green's functions, this problem is reduced to solving two coupled Fredholm integral equations with regular kernels. The solutions to these integral equations are used to determine the reflection and the transmission coefficients. The results for the reflection coefficient are presented graphically and are compared to those obtained earlier using other research methods. It is observed from the graphs that the results computed from the present analysis match exactly with the previous results.展开更多
In this paper we consider a kind of exterior transmission problem in which the refractive index n(x) is a piecewise positive constant. Through establishing an equivalent boundary integral system, we obtain that the ...In this paper we consider a kind of exterior transmission problem in which the refractive index n(x) is a piecewise positive constant. Through establishing an equivalent boundary integral system, we obtain that the set of exterior transmission eigenvalues is a discrete set. Furthermore, we prove that there does not exist a transmission eigenvalue under some conditions.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. 2010MS080)the Research Fund for Doctoral Program of Higher Education of China (Grant No. 20070487403)
文摘We apply the fast multipole method (FMM) accelerated boundary element method (BEM) for the three-dimensional (3D) Helmholtz equation, and as a result, large-scale acoustic scattering problems involving 400000 elements are solved efficiently. This is an extension of the fast multipole BEM for two-dimensional (2D) acoustic problems developed by authors recently. Some new improvements are obtained. In this new technique, the improved Burton-Miller formulation is employed to over-come non-uniqueness difficulties in the conventional BEM for exterior acoustic problems. The computational efficiency is further improved by adopting the FMM and the block diagonal preconditioner used in the generalized minimum residual method (GMRES) iterative solver to solve the system matrix equation. Numerical results clearly demonstrate the complete reliability and efficiency of the proposed algorithm. It is potentially useful for solving large-scale engineering acoustic scattering problems.
基金The Education Department.(12531136) of Heilongjiangthe NSF(10971083,51178001) of ChinaScience and Technology Research Project.(2014213) of Jilin Province Department of Education
文摘In this paper, we study, via variational methods, the problem of scattering of time harmonic acoustic waves by unbounded inhomogeneous layers above a sound soft rough surface. We first propose a variational formulation and exploit it as a theoretical tool to prove the well-posedness of this problem when the media is non-absorbing for arbitrary wave number and obtain an estimate about the solution, which exhibit explicitly dependence of bound on the wave number and on the geometry of the domain. Then, based on the non-absorbing results, we show that the variational problem remains uniquely solvable when the layer is absorbing by means of a priori estimate of the solution. Finally, we consider the finite element approximation of the problem and give an error estimate.
基金partially supported by the DOE grant DE-SC0022253the work of JL was partially supported by the NSF grant DMS-1719851 and DMS-2011148.
文摘In this work,we develop a stochastic gradient descent method for the computational optimal design of random rough surfaces in thin-film solar cells.We formulate the design problems as random PDE-constrained optimization problems and seek the optimal statistical parameters for the random surfaces.The optimizations at fixed frequency as well as at multiple frequencies and multiple incident angles are investigated.To evaluate the gradient of the objective function,we derive the shape derivatives for the interfaces and apply the adjoint state method to perform the computation.The stochastic gradient descent method evaluates the gradient of the objective function only at a few samples for each iteration,which reduces the computational cost significantly.Various numerical experiments are conducted to illustrate the efficiency of the method and significant increases of the absorptance for the optimal random structures.We also examine the convergence of the stochastic gradient descent algorithm theoretically and prove that the numerical method is convergent under certain assumptions for the random interfaces.
基金Supported by the National Natural Science Foundation of China (Grant No. 60571058)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070701010)
文摘The Time-Domain-Integral-Equation (TDIE) method is proposed to analyze transient scattering interaction between a two-dimensional infinitely long conducting target with an arbitrary cross section and a one-dimensional rough surface. Based on the electric-field-integral-equation in time domain, the explicit and implicit solutions of MOT (Marching-on-time) are derived and presented. The current response at the center of the rough surface and the far electric field response with time in the composite model are calculated and analyzed. The numerical results are compared and verified with those obtained by conventional MOM-IDFT (Method of Moment-inverse discrete Fourier transform). Finally, the influence of the size, the location of the target and the incident angle on the current response and the far electric fields response are discussed in detail.
文摘This paper gives a brief survey of recent developments on mathematical modeling and analysis of the open cavity scattering problems, which arise in diverse scientific areas and have significant industrial and military applications. The scattering problems are studied for the two-dimensional Helmholtz equation corresponding to the transverse magnetic or electric polarization, and the three-dimensional time-harmonic and time-domain Maxwell equations. Since these problems are imposed in open domains, a key step of the analysis is to develop transparent boundary conditions and reformulate them equivalently into boundary value problems in bounded domains. The well-posedness of weak solutions are shown for the associated variational problems by using either the Lax-Milgram theorem or the Fredholm alternative.
基金supported by the National Natural Science Foundation of China(Grant No.11101323)the Special Research Programs of ShaanXi Education Office(Grant No.09JK771,11JK1070).
文摘The inverse problem considered in this paper is to determine the shape and the impedance of crack from a knowledge of the time-harmonic incident field and the corresponding far field pattern of the scattered waves in two-dimension.The combined single-and double-layer potential is used to approach the scattered waves.As an important feature,this method does not require the solution of u and δu/δv at each iteration.An approximate method is presented and the convergence of this method is proven.Numerical examples are given to show that this method is both accurate and simple to use.
基金supported by the Department of Science and Technology of New Delhi (No.SR/SY/MS:521/08)
文摘The present paper is concerned with scattering of water waves from a vertical plate, modeled as an elastic plate, submerged in deep water covered with a thin uniform sheet of ice. The problem is formulated in terms of a hypersingular integral equation by a suitable application of Green's integral theorem in terms of difference of potential functicns across the barrier. This integral equation is solved by a collocation method using a finite series involving Chebyshev polynomials. Reflection and transmission coefficients are obtained numerically and presented graphically for various values of the wave number and ice-cover parameter.
基金supported by the National Natural Science Foundation of China(Nos.11871466,11571355)。
文摘In this paper,we consider the inverse acoustic scattering problem by an unbounded rough surface.A direct imaging method is proposed to reconstruct the rough surfaces from scattered-field data for incident plane waves and the performance analysis is also presented.The reconstruction method is very robust to noises of measured data and does’t need to know the type of the boundary conditions of the surfaces in advance.Finally,numerical examples are carried out to illustrate that our method is fast,accurate and stable even for the case of multiple-scale profiles.
基金Partially Supported by a DST Research Project to RG(No.SR/FTP/MS-020/2010)
文摘A new method to solve the boundary value problem arising in the study of scattering of two-dimensional surface water waves by a discontinuity in the surface boundary conditions is presented in this paper. The discontinuity arises due to the floating of two semi-infinite inertial surfaces of different surface densities. Applying Green's second identity to the potential functions and appropriate Green's functions, this problem is reduced to solving two coupled Fredholm integral equations with regular kernels. The solutions to these integral equations are used to determine the reflection and the transmission coefficients. The results for the reflection coefficient are presented graphically and are compared to those obtained earlier using other research methods. It is observed from the graphs that the results computed from the present analysis match exactly with the previous results.
基金supported by National Natural Science Foundation of People’s Republic of China(11571132 and 11171127)Supported in Part by Program for Changjiang Scholars and Innovative Research Team in University No.IRT13066
文摘In this paper we consider a kind of exterior transmission problem in which the refractive index n(x) is a piecewise positive constant. Through establishing an equivalent boundary integral system, we obtain that the set of exterior transmission eigenvalues is a discrete set. Furthermore, we prove that there does not exist a transmission eigenvalue under some conditions.