This paper investigates the interaction of a small number of modes in the two-fluid Kelvin-Helmholtz instability at the nonlinear regime by using a two-dimensional hydrodynamic code. This interaction is found to be re...This paper investigates the interaction of a small number of modes in the two-fluid Kelvin-Helmholtz instability at the nonlinear regime by using a two-dimensional hydrodynamic code. This interaction is found to be relatively long range in wave-number space and also it acts in both directions, i.e. short wavelengths affect long wavelengths and vice versa. There is no simple equivalent transformation from a band of similar modes to one mode representing their effective amplitude. Three distinct stages of interaction have been identified.展开更多
The metamaterial constructed by Helmholtz resonators (HR) has low-frequency acoustic forbidden bands and possesses negative mass density and effective bulk modulus at particular frequencies. The resonant modes in one-...The metamaterial constructed by Helmholtz resonators (HR) has low-frequency acoustic forbidden bands and possesses negative mass density and effective bulk modulus at particular frequencies. The resonant modes in one-dimensional HR structure with point defect were studied using finite element method (FEM). The results show that the acoustic energy is localized between the resonant HR and the opening in the local-resonant-type gap. There is a high pressure area around the defect resonator at the frequency of defect mode. In the Bragg type gap, the energy mainly distributes in the waveguide with harmonic attenuation due to the multi-scattering. Phase opposition demonstrates the existence of negative dynamic mass density. Local negative parameter is observed in the pass band due to the defect mode. Based on further investigation of the acoustic intensity and phase distributions in the resonators corresponding to two different forbidden bands, only one local resonant mode is verified, which is different from the three-component local resonant phononics. This work will be useful for understanding the mechanisms of acoustic forbidden bands and negative parameters in the HR metamaterial, and of help for designing new functional acoustic devices.展开更多
The Kelvin-Helmholtz instability is believed to be the dominant instability mechanism for free shear flows at large Reynolds numbers. At small Reynolds numbers, a new instability mode is identified when the temporal i...The Kelvin-Helmholtz instability is believed to be the dominant instability mechanism for free shear flows at large Reynolds numbers. At small Reynolds numbers, a new instability mode is identified when the temporal instability of parallel viscous two fluid mixing layers is extended to current-fluid mud systems by considering a composite error function velocity profile. The new mode is caused by the large viscosity difference between the two fluids. This interfacial mode exists when the fluid mud boundary layer is sufficiently thin. Its performance is different from that of the Kelvin-Helmholtz mode. This mode has not yet been reported for interface instability problems with large viscosity contrasts. These results are essential for further stability analysis of flows relevant to the breaking up of this type of interface.展开更多
基金Project supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant No 20070290008)the National Basic Research Program of China (Grant No 2007CB815100)
文摘This paper investigates the interaction of a small number of modes in the two-fluid Kelvin-Helmholtz instability at the nonlinear regime by using a two-dimensional hydrodynamic code. This interaction is found to be relatively long range in wave-number space and also it acts in both directions, i.e. short wavelengths affect long wavelengths and vice versa. There is no simple equivalent transformation from a band of similar modes to one mode representing their effective amplitude. Three distinct stages of interaction have been identified.
文摘The metamaterial constructed by Helmholtz resonators (HR) has low-frequency acoustic forbidden bands and possesses negative mass density and effective bulk modulus at particular frequencies. The resonant modes in one-dimensional HR structure with point defect were studied using finite element method (FEM). The results show that the acoustic energy is localized between the resonant HR and the opening in the local-resonant-type gap. There is a high pressure area around the defect resonator at the frequency of defect mode. In the Bragg type gap, the energy mainly distributes in the waveguide with harmonic attenuation due to the multi-scattering. Phase opposition demonstrates the existence of negative dynamic mass density. Local negative parameter is observed in the pass band due to the defect mode. Based on further investigation of the acoustic intensity and phase distributions in the resonators corresponding to two different forbidden bands, only one local resonant mode is verified, which is different from the three-component local resonant phononics. This work will be useful for understanding the mechanisms of acoustic forbidden bands and negative parameters in the HR metamaterial, and of help for designing new functional acoustic devices.
基金supported by the National Natural Science Foundation of China (Grants 11172307, 11232012 11572332)973 Program (Grant 2014CB046200)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDB22040203)
文摘The Kelvin-Helmholtz instability is believed to be the dominant instability mechanism for free shear flows at large Reynolds numbers. At small Reynolds numbers, a new instability mode is identified when the temporal instability of parallel viscous two fluid mixing layers is extended to current-fluid mud systems by considering a composite error function velocity profile. The new mode is caused by the large viscosity difference between the two fluids. This interfacial mode exists when the fluid mud boundary layer is sufficiently thin. Its performance is different from that of the Kelvin-Helmholtz mode. This mode has not yet been reported for interface instability problems with large viscosity contrasts. These results are essential for further stability analysis of flows relevant to the breaking up of this type of interface.