To investigate the characteristics of multidrugresistance and transplantation of modified stem/ progenitor cells by multidrugresistant gene (mdr1 gene), we established PA317/MDR1 cell line which producing retroviruse...To investigate the characteristics of multidrugresistance and transplantation of modified stem/ progenitor cells by multidrugresistant gene (mdr1 gene), we established PA317/MDR1 cell line which producing retroviruses by transfecting the retroviral vector PHaMDR1/A into packging cell line PA317 by Lipofectin. The virus titer of the supernatants was 1.2×105 cfu/ml. We transfected the murine hematopietic cells collected from 5FU pretreated mice and they showed the ability to reconstitute the longterm hematopoiesis of preirradiated mice. After 4 months, both of bone marrow cells and peripheral blood cells of transplanted mice still contained mdr1 gene. We also transfered mdr1 gene into human bone marrow CD34+ cells selected by using magnetic cell sorting system. PCR analysis showed that transduced CD34+ cells maintained the mdr1 cDNA. A fraction of CFUGM originated from transfected CD34+ cells had the charactor of resistance to Taxol. It is indicated that mdr1 gene can be transduced into murine and human stem/proginitor cells through retroviral mediated gene transfer and it protects the transfected cells from cytotoxic drugs.展开更多
Beyond glycemic control, applications of glucagon-like peptide-1 receptor (GLP-1r) agonists (GLP-1 RAs) inhibit inflammationand plaque development in murine atherosclerotic models. However, whether they modulate hemat...Beyond glycemic control, applications of glucagon-like peptide-1 receptor (GLP-1r) agonists (GLP-1 RAs) inhibit inflammationand plaque development in murine atherosclerotic models. However, whether they modulate hematopoietic stem/progenitor cells(HSPCs)to prohibit skewed myelopoiesis in hypercholesteremia remains unknown. In this study, GLP-1r expression in fluorescenceactivated cell sorting (FACS)-sorted wild-type HSPCs was determined by capillary western blotting. Bone marrow cells (BMCs)of wild-type or GLP-1r−/− mice were transplanted into lethally irradiated low-density lipoprotein receptor deficient (LDLr−/−)recipients followed by high-fat diet (HFD) for chimerism analysis by FACS. In parallel, LDLr−/− mice were placed on HFD for 6weeks and then treated with saline or Exendin-4 (Ex-4) for another 6 weeks. HSPC frequency and cell cycle were analyzed byFACS, and intracellular metabolite levels were assessed by targeted metabolomics. The results demonstrated that HSPCs expressedGLP-1r and transplantation of GLP-1r−/− BMCs resulted in skewed myelopoiesis in hypercholesterolemic LDLr−/− recipients.In vitro, Ex-4 treatment of FACS-purified HSPCs suppressed cell expansion and granulocyte production induced by LDL. In vivo, Ex-4treatment inhibited plaque progression, suppressed HSPC proliferation, and modified glycolytic and lipid metabolism in HSPCs ofhypercholesteremic LDLr−/− mice. In conclusion, Ex-4 could directly inhibit HSPC proliferation induced by hypercholesteremia.展开更多
Objective:To comprehensively explore hematopoietic stem cells(HSCs)in human milk,understanding their molecular markers,isolation methods,benefits for infants,and potential medical applications.Methods:We conducted a s...Objective:To comprehensively explore hematopoietic stem cells(HSCs)in human milk,understanding their molecular markers,isolation methods,benefits for infants,and potential medical applications.Methods:We conducted a scoping literature review following the PRISMA-ScR guidelines.This review included studies investigating HSCs in human milk,utilizing molecular markers such as CD34^(+),CD113^(+),and CD117^(+)for characterization.Both in vitro and in vivo studies exploring the morphology,function,and clinical implications of these cells were considered.The diverse range of papers reviewed were indexed in PubMed,Science Direct,Scopus,Sage Journals,and Google Scholar,published between 2010 and 2023.Results:This scoping review explored 577 articles and selected 13 studies based on our inclusion criteria,focusing on HSCs in human milk.Most studies dilute samples prior to HSC isolation,followed by detection using markers such as CD34^(+),CD113^(+),and CD117^(+),with flow cytometry serving as the primary analysis tool,focusing on their isolation and detection methods.While no definitive benefits have been conclusively established,there is a strong belief in the potential of HSCs to positively impact infant immunity,growth,and tissue repair.Conclusions:This review presents significant evidence supporting the presence of HSCs in human milk,identified by markers such as CD34^(+),CD113^(+),and CD117^(+).These cells show considerable potential in enhancing infant health,including immunity,tissue repair,cognitive development,and gastrointestinal health.Despite methodological variations in isolation and detection techniques,the collective findings underscore the potential clinical relevance of HSCs in human milk.Moreover,this review highlights the noninvasive accessibility of human milk as a source of HSCs and emphasizes the need for further research to unlock their therapeutic potential.展开更多
BACKGROUND In vitro expansion to increase numbers of hematopoietic stem cells(HSCs)in cord blood could improve clinical efficacy of this vital resource.Nicotinamide(NAM)can promote HSC expansion ex vivo,but its effect...BACKGROUND In vitro expansion to increase numbers of hematopoietic stem cells(HSCs)in cord blood could improve clinical efficacy of this vital resource.Nicotinamide(NAM)can promote HSC expansion ex vivo,but its effect on hematopoietic stem and progenitor cells(HSPCs,CD34^(+)CD38)and functional subtypes of HSCs-shortterm repopulating HSCs(ST-HSCs,CD34^(+)CD38CD45RACD49f^(+))and long-term repopulating HSCs(LT-HSCs,CD34^(+)CD38CD45RACD49f^(+)CD90^(+))is not yet known.As a sirtuin 1(SIRT1)inhibitor,NAM participates in regulating cell adhesion,polarity,migration,proliferation,and differentiation.However,SIRT1 exhibits dual effects by promoting or inhibiting differentiation in different tissues or cells.We propose that the concentration of NAM may influence proliferation,differentiation,and SIRT1 signaling of HSCs.AIM To evaluate the effects and underlying mechanisms of action of different concentrations of NAM on HSC proliferation and differentiation.METHODS CD34^(+)cells were purified from umbilical cord blood using MacsCD34 beads,and cultured for 10-12 d in a serum-free medium supplemented with cytokines,with different concentrations of NAM added according to experimental requirements.Flow cytometry was used to detect phenotype,cell cycle distribution,and apoptosis of the cultured cells.Real-time polymerase chain reaction was used to detect the transcription levels of target genes encoding stemness-related factors,che mokines,components of hypoxia pathways,and antioxidant enzymes.Dichloro-dihydro-fluorescein diacetate probes were used to evaluate intracellular production of reactive oxygen species(ROS).Determination of the effect of different culture conditions on the balance of cytokine by cytometric bead array.RESULTS Compared with the control group,the proportion and expansion folds of HSPCs(CD34^(+)CD38)incubated with 5 mmol/L or 10 mmol/L NAM were significantly increased(all P<0.05).The ST-HSCs ratio and fold expansion of the 5 mmol/L NAM group were significantly higher than those of the control and 10 mmol/L NAM groups(all P<0.001),whereas the LT-HSCs ratio and fold expansion of the 10 mmol/L NAM group were significantly higher than those of the other two groups(all P<0.05).When the NAM concentration was>10 mmol/L,cell viability significantly decreased.In addition,compared with the 5 mmol/L NAM group,the proportion of apoptotic cells in the 10 mmol/L NAM group increased and the proportion of cells in S and G2 phase decreased.Compared with the 5 mmol/L NAM group,the HSCs incubated with 10 mmol/L NAM exhibited significantly inhibited SIRT1 expression,increased intracellular ROS content,and downregulated expression of genes encoding antioxidant enzymes(superoxide dismutase 1,peroxiredoxin 1).CONCLUSION Low concentrations(5 mmol/L)of NAM can better regulate the balance between proliferation and differentiation,thereby promoting expansion of HSCs.These findings allow adjustment of NAM concentrations according to expansion needs.展开更多
Objective:We aimed to compare the quality-adjusted time without symptoms or toxicity(Q-TWiST)in acute myeloid leukemia(AML)patients who received haploidentical-related donor(HID)and identical sibling donor(ISD)hematop...Objective:We aimed to compare the quality-adjusted time without symptoms or toxicity(Q-TWiST)in acute myeloid leukemia(AML)patients who received haploidentical-related donor(HID)and identical sibling donor(ISD)hematopoietic stem cell transplantation(HSCT).Methods:Five clinical health states were defined:toxicity(TOX),acute graft-versus-host disease(GVHD),chronic GVHD(cGVHD),time without symptoms and toxicity(TWiST)and relapse(REL).The equation used in this study was as follows:Q-TWiST=UTOX×TOX+UTWiST×TWiST+UREL×REL+UaGVHD×aGVHD+UcGVHD×cGVHD.Results:A total of 239 AML patients were enrolled.We established a mathematical model,i.e.,Q-TWiST HID HSCT>Q-TWiST ISD HSCT,to explore the range of utility coefficients satisfying the inequality.Based on the raw data,the utility coefficient is equivalent to the following inequality:10.57067UTOX-46.27733UREL+105.9374+3.388078UaGVHD-210.8198UcGVHD>0.The model showed that when UTOX,UREL,and UaGVHD were within the range of 0-1,as well as when UcGVHD was within the range of 0-0.569,the inequality Q-TWiST HID HSCT>Q-TWiST ISD HSCT was valid.According to the results of the ChiCTR1800016972 study,the median coefficients of TOX,acute GVHD(aGVHD),and cGVHD were 0.56(0.41-0.76),0.56(0.47-0.72),and 0.54(0.37-0.79),respectively.We selected a series of specific examples of the coefficients,i.e.,UTOX=0.5,UREL=0.05,UaGVHD-0.5,and UcGVHD-0.5.The Q-TWiST values of ISD and HID HSCT were 896 and 900 d,respectively(P=0.470).Conclusions:We first observed that Q-TWiST was comparable between AML patients receiving HID HSCT and those receiving ISD HSCT.展开更多
BACKGROUND Aplastic anemia(AA)presents a significant clinical challenge as a life-threatening condition due to failure to produce essential blood cells,with the current the-rapeutic options being notably limited.AIM T...BACKGROUND Aplastic anemia(AA)presents a significant clinical challenge as a life-threatening condition due to failure to produce essential blood cells,with the current the-rapeutic options being notably limited.AIM To assess the therapeutic potential of ginsenoside Rg1 on AA,specifically its protective effects,while elucidating the mechanism at play.METHODS We employed a model of myelosuppression induced by cyclophosphamide(CTX)in C57 mice,followed by administration of ginsenoside Rg1 over 13 d.The invest-igation included examining the bone marrow,thymus and spleen for pathological changes via hematoxylin-eosin staining.Moreover,orbital blood of mice was collected for blood routine examinations.Flow cytometry was employed to identify the impact of ginsenoside Rg1 on cell apoptosis and cycle in the bone marrow of AA mice.Additionally,the study further evaluated cytokine levels with enzyme-linked immunosorbent assay and analyzed the expression of key proteins in the MAPK signaling pathway via western blot.RESULTS Administration of CTX led to significant damage to the bone marrow’s structural integrity and a reduction in hematopoietic cells,establishing a model of AA.Ginsenoside Rg1 successfully reversed hematopoietic dysfunction in AA mice.In comparison to the AA group,ginsenoside Rg1 provided relief by reducing the induction of cell apoptosis and inflammation factors caused by CTX.Furthermore,it helped alleviate the blockade in the cell cycle.Treatment with ginsenoside Rg1 significantly alleviated myelosuppression in mice by inhibiting the MAPK signaling pathway.CONCLUSION This study suggested that ginsenoside Rg1 addresses AA by alleviating myelosuppression,primarily through modulating the MAPK signaling pathway,which paves the way for a novel therapeutic strategy in treating AA,highlighting the potential of ginsenoside Rg1 as a beneficial intervention.展开更多
BACKGROUND Severe acute respiratory syndrome coronavirus 2 is the virus responsible for coronavirus disease 2019(COVID-19),a disease that has been blamed for inducing or exacerbating symptoms in patients with autoimmu...BACKGROUND Severe acute respiratory syndrome coronavirus 2 is the virus responsible for coronavirus disease 2019(COVID-19),a disease that has been blamed for inducing or exacerbating symptoms in patients with autoimmune diseases.Crohn's disease(CD)is an inflammatory bowel disease that affects genetically susceptible patients who develop an abnormal mucosal immune response to the intestinal microbiota.Patients who underwent hematopoietic stem cell transplantation(HSCT)are considered at risk for COVID-19.AIM To describe for the first time the impact of COVID-19 in CD patients who had undergone autologous,non-myeloablative HSCT.METHODS In this descriptive study a series of 19 patients were diagnosed with positive COVID-19.For two patients there were reports of the occurrence of two infectious episodes.Parameters related to HSCT,such as time elapsed since the procedure,vaccination status,CD status before and after infection,and clinical manifestations resulting from COVID-19,were evaluated.RESULTS Among the patients with COVID-19,three,who underwent Auto HSCT less than six months ago,relapsed and one,in addition to the CD symptoms,started to present thyroid impairment with positive anti-TPO.Only one of the patients required hospitalization for five days to treat COVID-19 and remained in CD clinical remission.Nine patients reported late symptoms that may be related to COVID-19.There were no deaths,and a statistical evaluation of the series of COVID-19 patients compared to those who did not present any infectious episode did not identify significant differences regarding the analyzed parameters.CONCLUSION Despite the change in CD status in three patients and the presence of nine patients with late symptoms,we can conclude that there was no significant adverse impact concerning COVID-19 in the evaluated patients who underwent HSCT to treat CD.展开更多
Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a p...Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a promising treatment for Parkinson’s disease.However,transplanted cells can be injured by mechanical damage during handling and by changes in the transplantation niche.Here,we developed a one-step biomanufacturing platform that uses small-aperture gelatin microcarriers to produce beads carrying midbrain dopaminergic progenitor cells.These beads allow midbrain dopaminergic progenitor cell differentiation and cryopreservation without digestion,effectively maintaining axonal integrity in vitro.Importantly,midbrain dopaminergic progenitor cell bead grafts showed increased survival and only mild immunoreactivity in vivo compared with suspended midbrain dopaminergic progenitor cell grafts.Overall,our findings show that these midbrain dopaminergic progenitor cell beads enhance the effectiveness of neuronal cell transplantation.展开更多
Although widely applied in treating hematopoietic malignancies,transplantation of hematopoietic stem/progenitor cells(HSPCs)is impeded by HSPC shortage.Whether circulating HSPCs(cHSPCs)in steady-state blood could be u...Although widely applied in treating hematopoietic malignancies,transplantation of hematopoietic stem/progenitor cells(HSPCs)is impeded by HSPC shortage.Whether circulating HSPCs(cHSPCs)in steady-state blood could be used as an alternative source remains largely elusive.Here we develop a three-dimensional culture system(3DCS)including arginine,glycine,aspartate,and a series of factors.Fourteen-day culture of peripheral blood mononuclear cells(PBMNCs)in 3DCS led to 125-and 70-fold increase of the frequency and number of CD34+cells.Further,3DCS-expanded cHSPCs exhibited the similar reconstitution rate com-pared to CD34+HSPCs in bone marrow.Mechanistically,3DCS fabricated an immunomodulatory niche,secreting cytokines as TNF to support cHSPC survival and proliferation.Finally,3DCS could also promote the expansion of cHSPCs in patients who failed in HSPC mobilization.Our 3DCS successfully expands rare cHSPCs,providing an alternative source for the HSPC therapy,particularly for the patients/donors who have failed in HSPC mobilization.展开更多
Objective: The aim of this study was to investigate the prevalence of sarcopenia(SP) and its relationship with gut microbiota alterations in patients with hematological diseases before and after hematopoietic stem cel...Objective: The aim of this study was to investigate the prevalence of sarcopenia(SP) and its relationship with gut microbiota alterations in patients with hematological diseases before and after hematopoietic stem cell transplantation(HSCT).Methods: A total of 108 patients with various hematological disorders were selected from Peking University People’s Hospital. SP was screened and diagnosed based on the 2019 Asian Sarcopenia Diagnosis Strategy. Physical measurements and fecal samples were collected, and 16S rRNA gene sequencing was conducted. Alpha and beta diversity analyses were performed to evaluate gut microbiota composition and diversity.Results: After HSCT, significant decreases in calf circumference and body mass index(BMI) were observed,accompanied by a decline in physical function. Gut microbiota analyses revealed significant differences in the relative abundance of Enterococcus, Bacteroides, Blautia and Dorea species before and after HSCT(P<0.05). Before HSCT, sarcopenic patients had lower Dorea levels and higher Phascolarctobacterium levels than non-sarcopenia patients(P<0.01). After HSCT, no significant differences in species abundance were observed. Alpha diversity analysis showed significant differences in species diversity among the groups, with the highest diversity in the postHSCT 90-day group and the lowest in the post-HSCT 30-day group. Beta diversity analysis revealed significant differences in species composition between pre-and post-HSCT time points but not between SP groups. Linear discriminant analysis effect size(LEfSe) identified Alistipes, Rikenellaceae, Alistipes putredinis, Prevotellaceae defectiva and Blautia coccoides as biomarkers for the pre-HSCT sarcopenia group. Functional predictions showed significant differences in anaerobic, biofilm-forming and oxidative stress-tolerant functions among the groups(P<0.05).Conclusions: This study demonstrated a significant decline in physical function after HSCT and identified potential gut microbiota biomarkers and functional alterations associated with SP in patients with hematological disorders. Further research is needed to explore the underlying mechanisms and potential therapeutic targets.展开更多
Background:Busulfan(BU)is an alkylating agent used as a conditioning agent prior to hematopoietic stem cell(HSC)transplantation as it is known to be cytotoxic to host hematopoietic stem and progenitor cells.The suscep...Background:Busulfan(BU)is an alkylating agent used as a conditioning agent prior to hematopoietic stem cell(HSC)transplantation as it is known to be cytotoxic to host hematopoietic stem and progenitor cells.The susceptibility of HSCs to BU injury plays an important role in the myeloablative efficacy of BU.Different susceptibilities were demonstrated in genetically diverse(GD)mice in our preliminary research.Methods:Three strains of GD mice with different susceptibilities to BU-i nduced HSC injury were used for screening biological markers of HSC injury susceptibility in urine.The urine proteins were analyzed using liquid chromatography coupled with tandem mass spectrometry to screen for differentially expressed proteins.Screening for possible biomarkers based on differences in protein expression abundance was validated using enzyme-l inked immunoassay(ELISA).Results:Functional analysis showed that the differential proteins were all involved in a series of biological pathways related to cellular senescence,apoptosis,and angiogenesis;whereas the differential proteins of the high-susceptible strain were enriched for the regulation of bone marrow microenvironment pathways,those of low-susceptible strain were enriched for the proapoptotic effect of GTPase pathways.Based on protein abundance differences,several urinary proteins that may be indicative of susceptibility were screened,and ELISA validation results showed that angiotensin-converting enzyme may be a potential biomarker predicting HSC susceptibility for BU conditioning.Conclusions:This study indicates that urinary protein levels can reflect differences in susceptibility to BU-i nduced HSC injury.Using GD mice to construct genetic difference models will provide preclinical data for screening BU-related biological markers.展开更多
BACKGROUND Immunosuppressive therapy and matched sibling donor hematopoietic stem cell transplantation(MSD-HSCT)are the preferred treatments for aplastic anemia(AA).CASE SUMMARY In this report,we describe a 43-year-ol...BACKGROUND Immunosuppressive therapy and matched sibling donor hematopoietic stem cell transplantation(MSD-HSCT)are the preferred treatments for aplastic anemia(AA).CASE SUMMARY In this report,we describe a 43-year-old male patient with severe AA who carried BRIP1(also known as FANCJ),TINF2,and TCIRG1 mutations.Screening of the family pedigree revealed the same TINF2 mutation in his mother and older brother,with his older brother also carrying the BRIP1 variant and demonstrating normal telomere length and hematopoietic function.The patient was successfully treated with oral cyclosporine A,eltrombopag,and acetylcysteine,achieving remission 4 years after receiving MSD-HSCT from his older brother.CONCLUSION This case provides a valuable clinical reference for individuals with suspected pathogenic gene mutations,normal telomere length,and hematopoietic function,highlighting them as potential donors for patients with AA.展开更多
Hematopoietic stem cell transplantation(HSCT)becomes a standard form of cellular therapy for patients with malignant diseases.HSCT is the first-choice of immunotherapy,although HSCT can be associated with many complic...Hematopoietic stem cell transplantation(HSCT)becomes a standard form of cellular therapy for patients with malignant diseases.HSCT is the first-choice of immunotherapy,although HSCT can be associated with many complications such as graft-versus-host disease(GVHD)which is a major cause of morbidity and mortality after allogeneic HSCT.It has been shown that certain gut microbiota could exert protective and/or regenerative immunomodulatory effects by the production of short-chain fatty acids(SCFAs)such as butyrate in the experimental models of GVHD after allogeneic HSCT.Loss of gut commensal bacteria which can produce SCFAs may worsen dysbiosis,increasing the risk of GVHD.Expression of G-protein coupled receptors such as GPR41 seems to be upre-gulated in the presence of commensal bacteria,which might be associated with the biology of regulatory T cells(Tregs).Treg cells are a suppressive subset of CD4 positive T lymphocytes implicated in the prevention of GVHD after allogeneic HSCT.Here,we discuss the current findings of the relationship between the modification of gut microbiota and the GVHD-related immunity,which suggested that tactics with certain probiotics for the beneficial symbiosis in gut-immune axis might lead to the elevation of safety in the allogeneic HSCT.展开更多
To examine the effects of co-culture with bone marrow mesenchymal stem cells on expansion of hematopoietic stem/progenitor cells and the capacities of rapid neutrophil engraftment and hematopoietic reconstitution of t...To examine the effects of co-culture with bone marrow mesenchymal stem cells on expansion of hematopoietic stem/progenitor cells and the capacities of rapid neutrophil engraftment and hematopoietic reconstitution of the expanded cells, we expanded mononuclear cells (MNCs) and CD34+/c-kit+ cells from mouse bone marrow and transplanted the ex-panded cells into the irradiated mice. MNCs were isolated from mouse bone marrow and CD34+/c-kit+ cells were selected from MNCs by using MoFlo Cell Sorter. MNCs and CD34+/c-kit+ cells were co-cultured with mouse bone marrow-derived mesenchymal stem cells (MSCs) under a two-step expansion. The expanded cells were then transplanted into sublethally irradiated BDF1 mice. Results showed that the co-culture with MSCs resulted in expansions of median total nucleated cells, CD34+ cells, GM-CFC and HPP-CFC respectively by 10.8-, 4.8-, 65.9- and 38.8-fold for the mononuclear cell culture, and respectively by 76.1-, 2.9-, 71.7- and 51.8-fold for the CD34+/c-kit+ cell culture. The expanded cells could rapidly engraft in the sublethally irradiated mice and reconstitute their hematopoiesis. Co-cultures with MSCs in conjunction with two-step expansion increased expansions of total nucleated cells, GM-CFC and HPP-CFC, which led us to conclude MSCs may create favorable environment for expansions of hematopoietic stem/progenitor cells. The availability of increased numbers of ex-panded cells by the co-culture with MSCs may result in more rapid engraftment of neutrophils following infusion to transplant recipients.展开更多
Bone marrow(BM) cavities are utilized for hematopoiesis and to maintain hematopoietic stem cells(HSCs). HSCs have the ability to self-renew as well as to differentiate into multiple different hematopoietic lineage cel...Bone marrow(BM) cavities are utilized for hematopoiesis and to maintain hematopoietic stem cells(HSCs). HSCs have the ability to self-renew as well as to differentiate into multiple different hematopoietic lineage cells. HSCs produce their daughter cells throughout the lifespan of individuals and thus, maintaining HSCs is crucial for individual life. BM cavities provide a specialized microenvironment termed "niche" to support HSCs. Niches are composed of various types of cells such as osteoblasts, endothelial cells and reticular cells. Osteoclasts are unique cells which resorb bones and are required for BM cavity formation. Loss of osteoclast function or differentiation results in inhibition of BM cavity formation, an osteopetrotic phenotype. Osteoclasts are also reportedly required for hematopoietic stem and progenitor cell(HSPC) mobilization to the periphery from BM cavities. Thus, lack of osteoclasts likely results in inhibition of HSC maintenance and HSPC mobilization. However, we found that osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization by using three independent osteoclast-less animal models. In this review, I will discuss the roles of osteoclasts in hematopoietic stem cell maintenance and mobilization.展开更多
When hematopoietic stem and progenitor cells(HSPC)are harvested for transplantation, either from the bone marrow or from mobilized blood, the graft contains a significant number of T cells. It is these T cells that ar...When hematopoietic stem and progenitor cells(HSPC)are harvested for transplantation, either from the bone marrow or from mobilized blood, the graft contains a significant number of T cells. It is these T cells that are the major drivers of graft-vs-host disease(Gv HD). The risk for Gv HD can simply be reduced by the removal of these T cells from the graft. However, this is not always desirable, as this procedure also decreases the engraftment of the transplanted HSPCs and, if applicable, a graft-vs-tumor effect. This poses an important conundrum in the field: T cells act as a double-edged sword upon allogeneic HSPC transplantation, as they support engraftment of HSPCs and provide anti-tumor activity, but can also cause Gv HD. It has recently been suggested that T cells also enhance the engraftment of autologous HSPCs, thus supporting the notion that T cells and HSPCs have an important functional interaction that is highly beneficial, in particular during transplantation. The underlying reason on why and how T cells contribute to HSPC engraftment is still poorly understood. Therefore, we evaluate in this review the studies that have examined the role of T cells during HSPC transplantation and the possible mechanisms involved in their supporting function. Understanding the underlying cellular and molecular mechanisms can provide new insight into improving HSPC engraftment and thus lower the number of HSPCs required during transplantation. Moreover, it could provide new avenues to limit the development of severe Gv HD, thus making HSPC transplantations more efficient and ultimately safer.展开更多
Hematopoietic stem cells(HSCs) have become the most extensively studied stem cells and HSC-based cellular therapy is promising for hematopoietic cancers and hereditary blood disorders. Successful treatment of patients...Hematopoietic stem cells(HSCs) have become the most extensively studied stem cells and HSC-based cellular therapy is promising for hematopoietic cancers and hereditary blood disorders. Successful treatment of patients with HSC cells depends on sufficient number of highly purified HSCs and progenitor cells. However, stem cells are a very rare population no matter where they come from. Thus, ex vivo amplification of these HSCs is essential. The heavy demands from more and more patients for HSCs also require industrial-scale expansion of HSCs with lower production cost and higher efficiency. Two main ways to reach that goal:(1) to find clinically applicable, simple and efficient methods(or reagents) to enrich HSCs;(2) to find new developmental regulators and chemical compounds in order to replace the currently used cytokine cocktails for HSCsamplification. In this Editorial review, we would like to introduce the current status of ex vivo expansion of HSCs, particularly focusing on enrichment and culture supplements.展开更多
Stem cell transplantation is a potential therapeutic strategy for ischemic stroke. However, despite many years of preclinical research, the application of stem cells is still limited to the clinical trial stage. Altho...Stem cell transplantation is a potential therapeutic strategy for ischemic stroke. However, despite many years of preclinical research, the application of stem cells is still limited to the clinical trial stage. Although stem cell therapy can be highly beneficial in promoting functional recovery, the precise mechanisms of action that are responsible for this effect have yet to be fully elucidated. Omics analysis provides us with a new perspective to investigate the physiological mechanisms and multiple functions of stem cells in ischemic stroke. Transcriptomic, proteomic, and metabolomic analyses have become important tools for discovering biomarkers and analyzing molecular changes under pathological conditions. Omics analysis could help us to identify new pathways mediated by stem cells for the treatment of ischemic stroke via stem cell therapy, thereby facilitating the translation of stem cell therapies into clinical use. In this review, we summarize the pathophysiology of ischemic stroke and discuss recent progress in the development of stem cell therapies for the treatment of ischemic stroke by applying multi-level omics. We also discuss changes in RNAs, proteins, and metabolites in the cerebral tissues and body fluids under stroke conditions and following stem cell treatment, and summarize the regulatory factors that play a key role in stem cell therapy. The exploration of stem cell therapy at the molecular level will facilitate the clinical application of stem cells and provide new treatment possibilities for the complete recovery of neurological function in patients with ischemic stroke.展开更多
文摘To investigate the characteristics of multidrugresistance and transplantation of modified stem/ progenitor cells by multidrugresistant gene (mdr1 gene), we established PA317/MDR1 cell line which producing retroviruses by transfecting the retroviral vector PHaMDR1/A into packging cell line PA317 by Lipofectin. The virus titer of the supernatants was 1.2×105 cfu/ml. We transfected the murine hematopietic cells collected from 5FU pretreated mice and they showed the ability to reconstitute the longterm hematopoiesis of preirradiated mice. After 4 months, both of bone marrow cells and peripheral blood cells of transplanted mice still contained mdr1 gene. We also transfered mdr1 gene into human bone marrow CD34+ cells selected by using magnetic cell sorting system. PCR analysis showed that transduced CD34+ cells maintained the mdr1 cDNA. A fraction of CFUGM originated from transfected CD34+ cells had the charactor of resistance to Taxol. It is indicated that mdr1 gene can be transduced into murine and human stem/proginitor cells through retroviral mediated gene transfer and it protects the transfected cells from cytotoxic drugs.
基金This study was partially supported by a grant from the ministry of HealthL abor and Welfare of Japan+1 种基金Hum an Genom e and Regenerative Medicine Project (ChairpersonHidehiko Saito)
基金supported by grants from the National Natural Science Foundation of China(81670765 and 82070841)to Y.F.
文摘Beyond glycemic control, applications of glucagon-like peptide-1 receptor (GLP-1r) agonists (GLP-1 RAs) inhibit inflammationand plaque development in murine atherosclerotic models. However, whether they modulate hematopoietic stem/progenitor cells(HSPCs)to prohibit skewed myelopoiesis in hypercholesteremia remains unknown. In this study, GLP-1r expression in fluorescenceactivated cell sorting (FACS)-sorted wild-type HSPCs was determined by capillary western blotting. Bone marrow cells (BMCs)of wild-type or GLP-1r−/− mice were transplanted into lethally irradiated low-density lipoprotein receptor deficient (LDLr−/−)recipients followed by high-fat diet (HFD) for chimerism analysis by FACS. In parallel, LDLr−/− mice were placed on HFD for 6weeks and then treated with saline or Exendin-4 (Ex-4) for another 6 weeks. HSPC frequency and cell cycle were analyzed byFACS, and intracellular metabolite levels were assessed by targeted metabolomics. The results demonstrated that HSPCs expressedGLP-1r and transplantation of GLP-1r−/− BMCs resulted in skewed myelopoiesis in hypercholesterolemic LDLr−/− recipients.In vitro, Ex-4 treatment of FACS-purified HSPCs suppressed cell expansion and granulocyte production induced by LDL. In vivo, Ex-4treatment inhibited plaque progression, suppressed HSPC proliferation, and modified glycolytic and lipid metabolism in HSPCs ofhypercholesteremic LDLr−/− mice. In conclusion, Ex-4 could directly inhibit HSPC proliferation induced by hypercholesteremia.
基金supported by the National Research and Innovation Agency of Republic of Indonesia(BRIN)-RIIM Batch-22022 research grants and the Institute of Education Fund Management(Lembaga Pengelola Dana Pendidikan-LPDP).
文摘Objective:To comprehensively explore hematopoietic stem cells(HSCs)in human milk,understanding their molecular markers,isolation methods,benefits for infants,and potential medical applications.Methods:We conducted a scoping literature review following the PRISMA-ScR guidelines.This review included studies investigating HSCs in human milk,utilizing molecular markers such as CD34^(+),CD113^(+),and CD117^(+)for characterization.Both in vitro and in vivo studies exploring the morphology,function,and clinical implications of these cells were considered.The diverse range of papers reviewed were indexed in PubMed,Science Direct,Scopus,Sage Journals,and Google Scholar,published between 2010 and 2023.Results:This scoping review explored 577 articles and selected 13 studies based on our inclusion criteria,focusing on HSCs in human milk.Most studies dilute samples prior to HSC isolation,followed by detection using markers such as CD34^(+),CD113^(+),and CD117^(+),with flow cytometry serving as the primary analysis tool,focusing on their isolation and detection methods.While no definitive benefits have been conclusively established,there is a strong belief in the potential of HSCs to positively impact infant immunity,growth,and tissue repair.Conclusions:This review presents significant evidence supporting the presence of HSCs in human milk,identified by markers such as CD34^(+),CD113^(+),and CD117^(+).These cells show considerable potential in enhancing infant health,including immunity,tissue repair,cognitive development,and gastrointestinal health.Despite methodological variations in isolation and detection techniques,the collective findings underscore the potential clinical relevance of HSCs in human milk.Moreover,this review highlights the noninvasive accessibility of human milk as a source of HSCs and emphasizes the need for further research to unlock their therapeutic potential.
基金the Science and Technology Department of Shanxi Province,No.YDZJSX2021B009Health Commission of Shanxi Province,No.2021XM07Shanxi Provincial Department of Education,No.2023KY380.
文摘BACKGROUND In vitro expansion to increase numbers of hematopoietic stem cells(HSCs)in cord blood could improve clinical efficacy of this vital resource.Nicotinamide(NAM)can promote HSC expansion ex vivo,but its effect on hematopoietic stem and progenitor cells(HSPCs,CD34^(+)CD38)and functional subtypes of HSCs-shortterm repopulating HSCs(ST-HSCs,CD34^(+)CD38CD45RACD49f^(+))and long-term repopulating HSCs(LT-HSCs,CD34^(+)CD38CD45RACD49f^(+)CD90^(+))is not yet known.As a sirtuin 1(SIRT1)inhibitor,NAM participates in regulating cell adhesion,polarity,migration,proliferation,and differentiation.However,SIRT1 exhibits dual effects by promoting or inhibiting differentiation in different tissues or cells.We propose that the concentration of NAM may influence proliferation,differentiation,and SIRT1 signaling of HSCs.AIM To evaluate the effects and underlying mechanisms of action of different concentrations of NAM on HSC proliferation and differentiation.METHODS CD34^(+)cells were purified from umbilical cord blood using MacsCD34 beads,and cultured for 10-12 d in a serum-free medium supplemented with cytokines,with different concentrations of NAM added according to experimental requirements.Flow cytometry was used to detect phenotype,cell cycle distribution,and apoptosis of the cultured cells.Real-time polymerase chain reaction was used to detect the transcription levels of target genes encoding stemness-related factors,che mokines,components of hypoxia pathways,and antioxidant enzymes.Dichloro-dihydro-fluorescein diacetate probes were used to evaluate intracellular production of reactive oxygen species(ROS).Determination of the effect of different culture conditions on the balance of cytokine by cytometric bead array.RESULTS Compared with the control group,the proportion and expansion folds of HSPCs(CD34^(+)CD38)incubated with 5 mmol/L or 10 mmol/L NAM were significantly increased(all P<0.05).The ST-HSCs ratio and fold expansion of the 5 mmol/L NAM group were significantly higher than those of the control and 10 mmol/L NAM groups(all P<0.001),whereas the LT-HSCs ratio and fold expansion of the 10 mmol/L NAM group were significantly higher than those of the other two groups(all P<0.05).When the NAM concentration was>10 mmol/L,cell viability significantly decreased.In addition,compared with the 5 mmol/L NAM group,the proportion of apoptotic cells in the 10 mmol/L NAM group increased and the proportion of cells in S and G2 phase decreased.Compared with the 5 mmol/L NAM group,the HSCs incubated with 10 mmol/L NAM exhibited significantly inhibited SIRT1 expression,increased intracellular ROS content,and downregulated expression of genes encoding antioxidant enzymes(superoxide dismutase 1,peroxiredoxin 1).CONCLUSION Low concentrations(5 mmol/L)of NAM can better regulate the balance between proliferation and differentiation,thereby promoting expansion of HSCs.These findings allow adjustment of NAM concentrations according to expansion needs.
基金supported by the Key Program of the National Natural Science Foundation of China(No.81930004)the National Natural Science Foundation of China(No.82170208)+2 种基金Tongzhou District Distinguished Young Scholars(No.JCQN2023009)Plan Project of Tongzhou Municipal Science and Technology(No.KJ2024CX045)Beijing Natural Science Foundation(No.Z230016)。
文摘Objective:We aimed to compare the quality-adjusted time without symptoms or toxicity(Q-TWiST)in acute myeloid leukemia(AML)patients who received haploidentical-related donor(HID)and identical sibling donor(ISD)hematopoietic stem cell transplantation(HSCT).Methods:Five clinical health states were defined:toxicity(TOX),acute graft-versus-host disease(GVHD),chronic GVHD(cGVHD),time without symptoms and toxicity(TWiST)and relapse(REL).The equation used in this study was as follows:Q-TWiST=UTOX×TOX+UTWiST×TWiST+UREL×REL+UaGVHD×aGVHD+UcGVHD×cGVHD.Results:A total of 239 AML patients were enrolled.We established a mathematical model,i.e.,Q-TWiST HID HSCT>Q-TWiST ISD HSCT,to explore the range of utility coefficients satisfying the inequality.Based on the raw data,the utility coefficient is equivalent to the following inequality:10.57067UTOX-46.27733UREL+105.9374+3.388078UaGVHD-210.8198UcGVHD>0.The model showed that when UTOX,UREL,and UaGVHD were within the range of 0-1,as well as when UcGVHD was within the range of 0-0.569,the inequality Q-TWiST HID HSCT>Q-TWiST ISD HSCT was valid.According to the results of the ChiCTR1800016972 study,the median coefficients of TOX,acute GVHD(aGVHD),and cGVHD were 0.56(0.41-0.76),0.56(0.47-0.72),and 0.54(0.37-0.79),respectively.We selected a series of specific examples of the coefficients,i.e.,UTOX=0.5,UREL=0.05,UaGVHD-0.5,and UcGVHD-0.5.The Q-TWiST values of ISD and HID HSCT were 896 and 900 d,respectively(P=0.470).Conclusions:We first observed that Q-TWiST was comparable between AML patients receiving HID HSCT and those receiving ISD HSCT.
基金Supported by Hangzhou Municipal Bureau of Science and Technology,No.2021WJCY366.
文摘BACKGROUND Aplastic anemia(AA)presents a significant clinical challenge as a life-threatening condition due to failure to produce essential blood cells,with the current the-rapeutic options being notably limited.AIM To assess the therapeutic potential of ginsenoside Rg1 on AA,specifically its protective effects,while elucidating the mechanism at play.METHODS We employed a model of myelosuppression induced by cyclophosphamide(CTX)in C57 mice,followed by administration of ginsenoside Rg1 over 13 d.The invest-igation included examining the bone marrow,thymus and spleen for pathological changes via hematoxylin-eosin staining.Moreover,orbital blood of mice was collected for blood routine examinations.Flow cytometry was employed to identify the impact of ginsenoside Rg1 on cell apoptosis and cycle in the bone marrow of AA mice.Additionally,the study further evaluated cytokine levels with enzyme-linked immunosorbent assay and analyzed the expression of key proteins in the MAPK signaling pathway via western blot.RESULTS Administration of CTX led to significant damage to the bone marrow’s structural integrity and a reduction in hematopoietic cells,establishing a model of AA.Ginsenoside Rg1 successfully reversed hematopoietic dysfunction in AA mice.In comparison to the AA group,ginsenoside Rg1 provided relief by reducing the induction of cell apoptosis and inflammation factors caused by CTX.Furthermore,it helped alleviate the blockade in the cell cycle.Treatment with ginsenoside Rg1 significantly alleviated myelosuppression in mice by inhibiting the MAPK signaling pathway.CONCLUSION This study suggested that ginsenoside Rg1 addresses AA by alleviating myelosuppression,primarily through modulating the MAPK signaling pathway,which paves the way for a novel therapeutic strategy in treating AA,highlighting the potential of ginsenoside Rg1 as a beneficial intervention.
文摘BACKGROUND Severe acute respiratory syndrome coronavirus 2 is the virus responsible for coronavirus disease 2019(COVID-19),a disease that has been blamed for inducing or exacerbating symptoms in patients with autoimmune diseases.Crohn's disease(CD)is an inflammatory bowel disease that affects genetically susceptible patients who develop an abnormal mucosal immune response to the intestinal microbiota.Patients who underwent hematopoietic stem cell transplantation(HSCT)are considered at risk for COVID-19.AIM To describe for the first time the impact of COVID-19 in CD patients who had undergone autologous,non-myeloablative HSCT.METHODS In this descriptive study a series of 19 patients were diagnosed with positive COVID-19.For two patients there were reports of the occurrence of two infectious episodes.Parameters related to HSCT,such as time elapsed since the procedure,vaccination status,CD status before and after infection,and clinical manifestations resulting from COVID-19,were evaluated.RESULTS Among the patients with COVID-19,three,who underwent Auto HSCT less than six months ago,relapsed and one,in addition to the CD symptoms,started to present thyroid impairment with positive anti-TPO.Only one of the patients required hospitalization for five days to treat COVID-19 and remained in CD clinical remission.Nine patients reported late symptoms that may be related to COVID-19.There were no deaths,and a statistical evaluation of the series of COVID-19 patients compared to those who did not present any infectious episode did not identify significant differences regarding the analyzed parameters.CONCLUSION Despite the change in CD status in three patients and the presence of nine patients with late symptoms,we can conclude that there was no significant adverse impact concerning COVID-19 in the evaluated patients who underwent HSCT to treat CD.
基金supported by the National Key Research and Development Program of China,Nos.2017YFE0122900(to BH),2019YFA0110800(to WL),2019YFA0903802(to YW),2021YFA1101604(to LW),2018YFA0108502(to LF),and 2020YFA0804003(to JW)the National Natural Science Foundation of China,Nos.31621004(to WL,BH)and 31970821(to YW)+1 种基金CAS Project for Young Scientists in Basic Research,No.YSBR-041(to YW)Joint Funds of the National Natural Science Foundation of China,No.U21A20396(to BH)。
文摘Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a promising treatment for Parkinson’s disease.However,transplanted cells can be injured by mechanical damage during handling and by changes in the transplantation niche.Here,we developed a one-step biomanufacturing platform that uses small-aperture gelatin microcarriers to produce beads carrying midbrain dopaminergic progenitor cells.These beads allow midbrain dopaminergic progenitor cell differentiation and cryopreservation without digestion,effectively maintaining axonal integrity in vitro.Importantly,midbrain dopaminergic progenitor cell bead grafts showed increased survival and only mild immunoreactivity in vivo compared with suspended midbrain dopaminergic progenitor cell grafts.Overall,our findings show that these midbrain dopaminergic progenitor cell beads enhance the effectiveness of neuronal cell transplantation.
基金Data and materials availability:Processed and raw data can be downloaded from NCBI GEO(#GSE122682,and#GSE153421).
文摘Although widely applied in treating hematopoietic malignancies,transplantation of hematopoietic stem/progenitor cells(HSPCs)is impeded by HSPC shortage.Whether circulating HSPCs(cHSPCs)in steady-state blood could be used as an alternative source remains largely elusive.Here we develop a three-dimensional culture system(3DCS)including arginine,glycine,aspartate,and a series of factors.Fourteen-day culture of peripheral blood mononuclear cells(PBMNCs)in 3DCS led to 125-and 70-fold increase of the frequency and number of CD34+cells.Further,3DCS-expanded cHSPCs exhibited the similar reconstitution rate com-pared to CD34+HSPCs in bone marrow.Mechanistically,3DCS fabricated an immunomodulatory niche,secreting cytokines as TNF to support cHSPC survival and proliferation.Finally,3DCS could also promote the expansion of cHSPCs in patients who failed in HSPC mobilization.Our 3DCS successfully expands rare cHSPCs,providing an alternative source for the HSPC therapy,particularly for the patients/donors who have failed in HSPC mobilization.
基金supported by Grant National Key R&D Program of China (No.2020YFC2005600 and No.2020YFC2005605)。
文摘Objective: The aim of this study was to investigate the prevalence of sarcopenia(SP) and its relationship with gut microbiota alterations in patients with hematological diseases before and after hematopoietic stem cell transplantation(HSCT).Methods: A total of 108 patients with various hematological disorders were selected from Peking University People’s Hospital. SP was screened and diagnosed based on the 2019 Asian Sarcopenia Diagnosis Strategy. Physical measurements and fecal samples were collected, and 16S rRNA gene sequencing was conducted. Alpha and beta diversity analyses were performed to evaluate gut microbiota composition and diversity.Results: After HSCT, significant decreases in calf circumference and body mass index(BMI) were observed,accompanied by a decline in physical function. Gut microbiota analyses revealed significant differences in the relative abundance of Enterococcus, Bacteroides, Blautia and Dorea species before and after HSCT(P<0.05). Before HSCT, sarcopenic patients had lower Dorea levels and higher Phascolarctobacterium levels than non-sarcopenia patients(P<0.01). After HSCT, no significant differences in species abundance were observed. Alpha diversity analysis showed significant differences in species diversity among the groups, with the highest diversity in the postHSCT 90-day group and the lowest in the post-HSCT 30-day group. Beta diversity analysis revealed significant differences in species composition between pre-and post-HSCT time points but not between SP groups. Linear discriminant analysis effect size(LEfSe) identified Alistipes, Rikenellaceae, Alistipes putredinis, Prevotellaceae defectiva and Blautia coccoides as biomarkers for the pre-HSCT sarcopenia group. Functional predictions showed significant differences in anaerobic, biofilm-forming and oxidative stress-tolerant functions among the groups(P<0.05).Conclusions: This study demonstrated a significant decline in physical function after HSCT and identified potential gut microbiota biomarkers and functional alterations associated with SP in patients with hematological disorders. Further research is needed to explore the underlying mechanisms and potential therapeutic targets.
基金National Natural Scientific Foundation of ChinaGrant/Award Number:81972975+2 种基金National Human Diseases Animal Model Resource CenterNational Science Foundation for Young Scientists of ChinaGrant/Award Number:81703170。
文摘Background:Busulfan(BU)is an alkylating agent used as a conditioning agent prior to hematopoietic stem cell(HSC)transplantation as it is known to be cytotoxic to host hematopoietic stem and progenitor cells.The susceptibility of HSCs to BU injury plays an important role in the myeloablative efficacy of BU.Different susceptibilities were demonstrated in genetically diverse(GD)mice in our preliminary research.Methods:Three strains of GD mice with different susceptibilities to BU-i nduced HSC injury were used for screening biological markers of HSC injury susceptibility in urine.The urine proteins were analyzed using liquid chromatography coupled with tandem mass spectrometry to screen for differentially expressed proteins.Screening for possible biomarkers based on differences in protein expression abundance was validated using enzyme-l inked immunoassay(ELISA).Results:Functional analysis showed that the differential proteins were all involved in a series of biological pathways related to cellular senescence,apoptosis,and angiogenesis;whereas the differential proteins of the high-susceptible strain were enriched for the regulation of bone marrow microenvironment pathways,those of low-susceptible strain were enriched for the proapoptotic effect of GTPase pathways.Based on protein abundance differences,several urinary proteins that may be indicative of susceptibility were screened,and ELISA validation results showed that angiotensin-converting enzyme may be a potential biomarker predicting HSC susceptibility for BU conditioning.Conclusions:This study indicates that urinary protein levels can reflect differences in susceptibility to BU-i nduced HSC injury.Using GD mice to construct genetic difference models will provide preclinical data for screening BU-related biological markers.
文摘BACKGROUND Immunosuppressive therapy and matched sibling donor hematopoietic stem cell transplantation(MSD-HSCT)are the preferred treatments for aplastic anemia(AA).CASE SUMMARY In this report,we describe a 43-year-old male patient with severe AA who carried BRIP1(also known as FANCJ),TINF2,and TCIRG1 mutations.Screening of the family pedigree revealed the same TINF2 mutation in his mother and older brother,with his older brother also carrying the BRIP1 variant and demonstrating normal telomere length and hematopoietic function.The patient was successfully treated with oral cyclosporine A,eltrombopag,and acetylcysteine,achieving remission 4 years after receiving MSD-HSCT from his older brother.CONCLUSION This case provides a valuable clinical reference for individuals with suspected pathogenic gene mutations,normal telomere length,and hematopoietic function,highlighting them as potential donors for patients with AA.
文摘Hematopoietic stem cell transplantation(HSCT)becomes a standard form of cellular therapy for patients with malignant diseases.HSCT is the first-choice of immunotherapy,although HSCT can be associated with many complications such as graft-versus-host disease(GVHD)which is a major cause of morbidity and mortality after allogeneic HSCT.It has been shown that certain gut microbiota could exert protective and/or regenerative immunomodulatory effects by the production of short-chain fatty acids(SCFAs)such as butyrate in the experimental models of GVHD after allogeneic HSCT.Loss of gut commensal bacteria which can produce SCFAs may worsen dysbiosis,increasing the risk of GVHD.Expression of G-protein coupled receptors such as GPR41 seems to be upre-gulated in the presence of commensal bacteria,which might be associated with the biology of regulatory T cells(Tregs).Treg cells are a suppressive subset of CD4 positive T lymphocytes implicated in the prevention of GVHD after allogeneic HSCT.Here,we discuss the current findings of the relationship between the modification of gut microbiota and the GVHD-related immunity,which suggested that tactics with certain probiotics for the beneficial symbiosis in gut-immune axis might lead to the elevation of safety in the allogeneic HSCT.
文摘To examine the effects of co-culture with bone marrow mesenchymal stem cells on expansion of hematopoietic stem/progenitor cells and the capacities of rapid neutrophil engraftment and hematopoietic reconstitution of the expanded cells, we expanded mononuclear cells (MNCs) and CD34+/c-kit+ cells from mouse bone marrow and transplanted the ex-panded cells into the irradiated mice. MNCs were isolated from mouse bone marrow and CD34+/c-kit+ cells were selected from MNCs by using MoFlo Cell Sorter. MNCs and CD34+/c-kit+ cells were co-cultured with mouse bone marrow-derived mesenchymal stem cells (MSCs) under a two-step expansion. The expanded cells were then transplanted into sublethally irradiated BDF1 mice. Results showed that the co-culture with MSCs resulted in expansions of median total nucleated cells, CD34+ cells, GM-CFC and HPP-CFC respectively by 10.8-, 4.8-, 65.9- and 38.8-fold for the mononuclear cell culture, and respectively by 76.1-, 2.9-, 71.7- and 51.8-fold for the CD34+/c-kit+ cell culture. The expanded cells could rapidly engraft in the sublethally irradiated mice and reconstitute their hematopoiesis. Co-cultures with MSCs in conjunction with two-step expansion increased expansions of total nucleated cells, GM-CFC and HPP-CFC, which led us to conclude MSCs may create favorable environment for expansions of hematopoietic stem/progenitor cells. The availability of increased numbers of ex-panded cells by the co-culture with MSCs may result in more rapid engraftment of neutrophils following infusion to transplant recipients.
文摘Bone marrow(BM) cavities are utilized for hematopoiesis and to maintain hematopoietic stem cells(HSCs). HSCs have the ability to self-renew as well as to differentiate into multiple different hematopoietic lineage cells. HSCs produce their daughter cells throughout the lifespan of individuals and thus, maintaining HSCs is crucial for individual life. BM cavities provide a specialized microenvironment termed "niche" to support HSCs. Niches are composed of various types of cells such as osteoblasts, endothelial cells and reticular cells. Osteoclasts are unique cells which resorb bones and are required for BM cavity formation. Loss of osteoclast function or differentiation results in inhibition of BM cavity formation, an osteopetrotic phenotype. Osteoclasts are also reportedly required for hematopoietic stem and progenitor cell(HSPC) mobilization to the periphery from BM cavities. Thus, lack of osteoclasts likely results in inhibition of HSC maintenance and HSPC mobilization. However, we found that osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization by using three independent osteoclast-less animal models. In this review, I will discuss the roles of osteoclasts in hematopoietic stem cell maintenance and mobilization.
基金Supported by a fellowship obt-ained by Nolt-e MA from t-he Landst-einer Foundat-ion for Blood Transfusion Research(www.lsbr.nl),No.#1014
文摘When hematopoietic stem and progenitor cells(HSPC)are harvested for transplantation, either from the bone marrow or from mobilized blood, the graft contains a significant number of T cells. It is these T cells that are the major drivers of graft-vs-host disease(Gv HD). The risk for Gv HD can simply be reduced by the removal of these T cells from the graft. However, this is not always desirable, as this procedure also decreases the engraftment of the transplanted HSPCs and, if applicable, a graft-vs-tumor effect. This poses an important conundrum in the field: T cells act as a double-edged sword upon allogeneic HSPC transplantation, as they support engraftment of HSPCs and provide anti-tumor activity, but can also cause Gv HD. It has recently been suggested that T cells also enhance the engraftment of autologous HSPCs, thus supporting the notion that T cells and HSPCs have an important functional interaction that is highly beneficial, in particular during transplantation. The underlying reason on why and how T cells contribute to HSPC engraftment is still poorly understood. Therefore, we evaluate in this review the studies that have examined the role of T cells during HSPC transplantation and the possible mechanisms involved in their supporting function. Understanding the underlying cellular and molecular mechanisms can provide new insight into improving HSPC engraftment and thus lower the number of HSPCs required during transplantation. Moreover, it could provide new avenues to limit the development of severe Gv HD, thus making HSPC transplantations more efficient and ultimately safer.
基金Supported by Canadian Institutes of Health Research,No.123336CFI Leader’s Opportunity Fund,No.25407Physicians’ Services Incorporated Foundation-Health Research Grant Program(MGJ)
文摘Hematopoietic stem cells(HSCs) have become the most extensively studied stem cells and HSC-based cellular therapy is promising for hematopoietic cancers and hereditary blood disorders. Successful treatment of patients with HSC cells depends on sufficient number of highly purified HSCs and progenitor cells. However, stem cells are a very rare population no matter where they come from. Thus, ex vivo amplification of these HSCs is essential. The heavy demands from more and more patients for HSCs also require industrial-scale expansion of HSCs with lower production cost and higher efficiency. Two main ways to reach that goal:(1) to find clinically applicable, simple and efficient methods(or reagents) to enrich HSCs;(2) to find new developmental regulators and chemical compounds in order to replace the currently used cytokine cocktails for HSCsamplification. In this Editorial review, we would like to introduce the current status of ex vivo expansion of HSCs, particularly focusing on enrichment and culture supplements.
基金supported by the National Key Research and Development Program of China,No.2018YFA0108602the CAMS Initiative for Innovative Medicine,No.2021-1-I2M-019the National High Level Hospital Clinical Research Funding,No.2022-PUMCH-C-042(all to XB).
文摘Stem cell transplantation is a potential therapeutic strategy for ischemic stroke. However, despite many years of preclinical research, the application of stem cells is still limited to the clinical trial stage. Although stem cell therapy can be highly beneficial in promoting functional recovery, the precise mechanisms of action that are responsible for this effect have yet to be fully elucidated. Omics analysis provides us with a new perspective to investigate the physiological mechanisms and multiple functions of stem cells in ischemic stroke. Transcriptomic, proteomic, and metabolomic analyses have become important tools for discovering biomarkers and analyzing molecular changes under pathological conditions. Omics analysis could help us to identify new pathways mediated by stem cells for the treatment of ischemic stroke via stem cell therapy, thereby facilitating the translation of stem cell therapies into clinical use. In this review, we summarize the pathophysiology of ischemic stroke and discuss recent progress in the development of stem cell therapies for the treatment of ischemic stroke by applying multi-level omics. We also discuss changes in RNAs, proteins, and metabolites in the cerebral tissues and body fluids under stroke conditions and following stem cell treatment, and summarize the regulatory factors that play a key role in stem cell therapy. The exploration of stem cell therapy at the molecular level will facilitate the clinical application of stem cells and provide new treatment possibilities for the complete recovery of neurological function in patients with ischemic stroke.