AIM: To investigate effects of iron on oxidative stress, heme oxygenase-1 (HMOX1) and hepatitis C viral (HCV) expression in human hepatoma ceils stably expressing HCV proteins. METHODS: Effects of iron on oxidat...AIM: To investigate effects of iron on oxidative stress, heme oxygenase-1 (HMOX1) and hepatitis C viral (HCV) expression in human hepatoma ceils stably expressing HCV proteins. METHODS: Effects of iron on oxidative stress, HMOX1, and HCV expression were assessed in CON1 cells. Measurements included mRNA by quantitative reverse transcription-polymerase chain reaction, and protein levels by Western blots. RESULTS: Iron, in the form of ferric nitrilotriacetate,increased oxidative stress and upegulated HMOX1 gene expression. Iron did not affect mRNA or protein levels of Bach1, a repressor of HMOXl. Silencing the up-regulation of HMOXl nuclear factor-erythroid 2-related factor 2 (Nrf2) by Nrf2-siRNA decreased FeNTA-mediated up-regulation of HMOXl mRNA levels. These iron effects were completely blocked by deferoxamine (DFO). Iron also significantly decreased levels of HCV core mRNA and protein by 80%-90%, nonstructural 5A mRNA by 90% and protein by about 50% in the Con1 full length HCV replicon cells, whereas DFO increased them. CONCLUSION: Excess iron up-regulates HMOXl and down-regulates HCV gene expression in hepatoma cells. This probably mitigates liver injury caused by combined iron overload and HCV infection.展开更多
Owing to the widespread distribution of mosquitoes capable of transmitting Zika virus, lack of clinical vaccines and treatments, and poor immunity of populations to new infectious diseases, Zika virus has become a glo...Owing to the widespread distribution of mosquitoes capable of transmitting Zika virus, lack of clinical vaccines and treatments, and poor immunity of populations to new infectious diseases, Zika virus has become a global public health concern. Recent studies have found that Zika virus can continuously infect human brain microvascular endothelial cells.These cells are the primary components of the blood–brain barrier of the cerebral cortex, and further infection of brain tissue may cause severe damage such as encephalitis and fetal pituitary disease. The present study found that a biologically active base, piperlongumine(PL), inhibited Zika virus replication in human brain microvascular endothelial cells, Vero cells, and human umbilical vein endothelial cells. PL also significantly increased heme oxygenase-1(HO-1) gene expression, while silencing HO-1 expression and using the reactive oxygen species scavenger, N-acetylcysteine, attenuated the inhibitory effect of PL on Zika virus replication. These results suggest that PL induces oxidative stress in cells by increasing reactive oxygen species. This, in turn, induces an increase in HO-1 expression, thereby inhibiting Zika virus replication. These findings provide novel clues for drug research on the prevention and treatment of Zika virus.展开更多
基金Supported by Grant(DK RO1 38825) and contracts(DK NO129236 and UO1 DK 06193)from the National Institutes of Health(NIDDK)
文摘AIM: To investigate effects of iron on oxidative stress, heme oxygenase-1 (HMOX1) and hepatitis C viral (HCV) expression in human hepatoma ceils stably expressing HCV proteins. METHODS: Effects of iron on oxidative stress, HMOX1, and HCV expression were assessed in CON1 cells. Measurements included mRNA by quantitative reverse transcription-polymerase chain reaction, and protein levels by Western blots. RESULTS: Iron, in the form of ferric nitrilotriacetate,increased oxidative stress and upegulated HMOX1 gene expression. Iron did not affect mRNA or protein levels of Bach1, a repressor of HMOXl. Silencing the up-regulation of HMOXl nuclear factor-erythroid 2-related factor 2 (Nrf2) by Nrf2-siRNA decreased FeNTA-mediated up-regulation of HMOXl mRNA levels. These iron effects were completely blocked by deferoxamine (DFO). Iron also significantly decreased levels of HCV core mRNA and protein by 80%-90%, nonstructural 5A mRNA by 90% and protein by about 50% in the Con1 full length HCV replicon cells, whereas DFO increased them. CONCLUSION: Excess iron up-regulates HMOXl and down-regulates HCV gene expression in hepatoma cells. This probably mitigates liver injury caused by combined iron overload and HCV infection.
基金supported by the National Natural Science Foundation (Nos. 31670168, 31470271 and 81730110)National Key R&D Program of China (Grant No. 2018YFC1602206)Guangdong Provincial Science and Technology (No. 2018B020207006)。
文摘Owing to the widespread distribution of mosquitoes capable of transmitting Zika virus, lack of clinical vaccines and treatments, and poor immunity of populations to new infectious diseases, Zika virus has become a global public health concern. Recent studies have found that Zika virus can continuously infect human brain microvascular endothelial cells.These cells are the primary components of the blood–brain barrier of the cerebral cortex, and further infection of brain tissue may cause severe damage such as encephalitis and fetal pituitary disease. The present study found that a biologically active base, piperlongumine(PL), inhibited Zika virus replication in human brain microvascular endothelial cells, Vero cells, and human umbilical vein endothelial cells. PL also significantly increased heme oxygenase-1(HO-1) gene expression, while silencing HO-1 expression and using the reactive oxygen species scavenger, N-acetylcysteine, attenuated the inhibitory effect of PL on Zika virus replication. These results suggest that PL induces oxidative stress in cells by increasing reactive oxygen species. This, in turn, induces an increase in HO-1 expression, thereby inhibiting Zika virus replication. These findings provide novel clues for drug research on the prevention and treatment of Zika virus.