We fabricated wearable perspiration analyzing sites for actively monitoring physiological status during exercises without any batteries or other power supply.The device mainly consists of ZnO nanowire(NW)arrays and fl...We fabricated wearable perspiration analyzing sites for actively monitoring physiological status during exercises without any batteries or other power supply.The device mainly consists of ZnO nanowire(NW)arrays and flexible polydimethylsiloxane substrate.Sweat on the skin can flow into the flow channels of the device through capillary action and flow along the channels to ZnO NWs.The sweat flowing on the NWs(with lactate oxidase modification)can output a DC electrical signal,and the outputting voltage is dependent on the lactate concentration in the sweat as the biosensing signal.ZnO NWs generate electric double layer(EDL)in sweat,which causes a potential difference between the upper and lower ends(hydrovoltaic effect).The product of the enzymatic reaction can adjust the EDL and influence the output.This device can be integrated with wireless transmitter and may have potential application in constructing sports big data.This work promotes the development of next generation of biosensors and expands the scope of self-powered physiological monitoring system.展开更多
The photo-reactions between metabolic products of human sweat and dyestuffs on garments may produce many toxic substances which could directly contact skin and threaten human health. In order to investigate the impact...The photo-reactions between metabolic products of human sweat and dyestuffs on garments may produce many toxic substances which could directly contact skin and threaten human health. In order to investigate the impact of the perspiration on photo-fading of reactive dyes on cellulose, nine commercial reactive dyes belonging to three types of chromophores (azo, Cu-complex azo and anthraquinone) respectively were chosen and their perspiration-light stability on cotton fabric was studied following ATTS test standard. It is found that the impact of the artificial perspiration on dyes varies with different chromophores: anthraquinone reactive dyes always show the best photo-stability, whereas Cu-complex azo reactive dyes appear to be the most sensitive under exposure to light and perspiration. The pH value of perspiration also greatly influences the fading of dyes with different reactive groups: the fading rate of most chlorotriazinyl reactive dyes in acidic perspiration (pH=3.5) is higher than in alkaline perspiration (pH=8.0), while the reverse is true for most vinylsulphonyl dyes. Furthermore, the study of the contribution of individual component of the artificial perspiration discloses that L-Histidine monohydrochloride monohydrate, DL-Aspartic acid and lactic acid play the major roles on the photo-fading of those selected dyestuffs and inorganic salts including disodium hydrogen phosphate and sodium chloride usually decelerate photo-fading.展开更多
基金supported by the National Natural Science Foundation of China(11674048)Sichuan Science and Technology Program(20JCQN0201).
文摘We fabricated wearable perspiration analyzing sites for actively monitoring physiological status during exercises without any batteries or other power supply.The device mainly consists of ZnO nanowire(NW)arrays and flexible polydimethylsiloxane substrate.Sweat on the skin can flow into the flow channels of the device through capillary action and flow along the channels to ZnO NWs.The sweat flowing on the NWs(with lactate oxidase modification)can output a DC electrical signal,and the outputting voltage is dependent on the lactate concentration in the sweat as the biosensing signal.ZnO NWs generate electric double layer(EDL)in sweat,which causes a potential difference between the upper and lower ends(hydrovoltaic effect).The product of the enzymatic reaction can adjust the EDL and influence the output.This device can be integrated with wireless transmitter and may have potential application in constructing sports big data.This work promotes the development of next generation of biosensors and expands the scope of self-powered physiological monitoring system.
基金Supported by Foundation of University Doctoral Programby the State Ministry of Education (No.20050255002)
文摘The photo-reactions between metabolic products of human sweat and dyestuffs on garments may produce many toxic substances which could directly contact skin and threaten human health. In order to investigate the impact of the perspiration on photo-fading of reactive dyes on cellulose, nine commercial reactive dyes belonging to three types of chromophores (azo, Cu-complex azo and anthraquinone) respectively were chosen and their perspiration-light stability on cotton fabric was studied following ATTS test standard. It is found that the impact of the artificial perspiration on dyes varies with different chromophores: anthraquinone reactive dyes always show the best photo-stability, whereas Cu-complex azo reactive dyes appear to be the most sensitive under exposure to light and perspiration. The pH value of perspiration also greatly influences the fading of dyes with different reactive groups: the fading rate of most chlorotriazinyl reactive dyes in acidic perspiration (pH=3.5) is higher than in alkaline perspiration (pH=8.0), while the reverse is true for most vinylsulphonyl dyes. Furthermore, the study of the contribution of individual component of the artificial perspiration discloses that L-Histidine monohydrochloride monohydrate, DL-Aspartic acid and lactic acid play the major roles on the photo-fading of those selected dyestuffs and inorganic salts including disodium hydrogen phosphate and sodium chloride usually decelerate photo-fading.