BNCT is finally becoming "a new option against cancer". The difficulties for its development progress of that firstly is to improve the performance of boron compounds, secondly, it is the requirements of quantificat...BNCT is finally becoming "a new option against cancer". The difficulties for its development progress of that firstly is to improve the performance of boron compounds, secondly, it is the requirements of quantification and accuracy upon radiation dosimetry evaluation in clinical trials. Furthermore, that is long anticipation on hospital base neutron sources. It includes dedicated new NCT reactor, accelerator based neutron sources, and isotope source facilities. In ad- dition to reactors, so far, the technology of other types of sources for clinical trials is not yet completely proven. The In- Hospital Neutron lrradiator specially designed for NCT, based on the MNSR successfully developed by China, can be installed inside or near the hospital and operated directly by doctors. The Irradiator has two neutron beams for respective treatment of the shallow and deep tumors. It is expected to initiate operation in the end of this year. It would provide a safe, low cost, and effective treatment tool for the NCT routine application in near future.展开更多
The effects of ^60Co γ-ray irradiation on the DC characteristics of AlGaN/GaN enhancement-mode high-electron- mobility transistors (E-mode HEMTs) are investigated. The results show that having been irradiated by^60...The effects of ^60Co γ-ray irradiation on the DC characteristics of AlGaN/GaN enhancement-mode high-electron- mobility transistors (E-mode HEMTs) are investigated. The results show that having been irradiated by^60Co γ-rays at a dose of 3 Mrad (Si), the E-mode HEMT reduces its saturation drain current and maximal transconductance by 6% and 5%, respectively, and significantly increases both forward and reverse gate currents, while its threshold voltage is affected only slightly. The obvious performance degradation of E-mode A1GaN/GaN HEMTs is consistent with the creation of electronegative surface state charges in the source-gate spacer and gate-drain spacer after being irradiated.展开更多
文摘BNCT is finally becoming "a new option against cancer". The difficulties for its development progress of that firstly is to improve the performance of boron compounds, secondly, it is the requirements of quantification and accuracy upon radiation dosimetry evaluation in clinical trials. Furthermore, that is long anticipation on hospital base neutron sources. It includes dedicated new NCT reactor, accelerator based neutron sources, and isotope source facilities. In ad- dition to reactors, so far, the technology of other types of sources for clinical trials is not yet completely proven. The In- Hospital Neutron lrradiator specially designed for NCT, based on the MNSR successfully developed by China, can be installed inside or near the hospital and operated directly by doctors. The Irradiator has two neutron beams for respective treatment of the shallow and deep tumors. It is expected to initiate operation in the end of this year. It would provide a safe, low cost, and effective treatment tool for the NCT routine application in near future.
基金Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 50932002)
文摘The effects of ^60Co γ-ray irradiation on the DC characteristics of AlGaN/GaN enhancement-mode high-electron- mobility transistors (E-mode HEMTs) are investigated. The results show that having been irradiated by^60Co γ-rays at a dose of 3 Mrad (Si), the E-mode HEMT reduces its saturation drain current and maximal transconductance by 6% and 5%, respectively, and significantly increases both forward and reverse gate currents, while its threshold voltage is affected only slightly. The obvious performance degradation of E-mode A1GaN/GaN HEMTs is consistent with the creation of electronegative surface state charges in the source-gate spacer and gate-drain spacer after being irradiated.