The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural per...The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural percutaneous organs, in particular their extracellular matrix mediating the “device”/epithelium interface, serve as exquisite examples to inspire longer lasting long-term percutaneous device design. For example, the tooth’s imperviousness to infection is mediated by the epithelium directly surrounding it, the junctional epithelium (JE). The hallmark feature of JE is formation of hemidesmosomes, cell/matrix adhesive structures that attach surrounding oral gingiva to the tooth’s enamel through a basement membrane. Here, the authors survey the multifaceted functions of the JE, emphasizing the role of the matrix, with a particular focus on hemidesmosomes and their five main components. The authors highlight the known (and unknown) effects dental implant - as a model percutaneous device - placement has on JE regeneration and synthesize this information for application to other percutaneous devices. The authors conclude with a summary of bioengineering strategies aimed at solving the percutaneous device dilemma and invigorating greater collaboration between clinicians, bioengineers, and matrix biologists.展开更多
Somatic stem cells are essential for the maintenance of tissue homeostasis. Despite its importance, how the esophageal stratified squamous epithelium executes its self-renewal and maintenance remains elusive. In this ...Somatic stem cells are essential for the maintenance of tissue homeostasis. Despite its importance, how the esophageal stratified squamous epithelium executes its self-renewal and maintenance remains elusive. In this study, using 5-bromo-2′-deoxyuridine label-chase in rats in vivo and rat esophageal organoids in vitro together with genome-wide DNA methylation and single-cell RNA sequencing, we identified a slow-cycling/quiescent stem cell population that contained high levels of hemidesmosomes (HDs) and low levels of Wnt signaling localized spatially and randomly at the basal layer of the esophageal epithelium. Pseudotime cell trajectory analysis indicated that tissue cells originated from quiescent basal stem cells in the basal layer. Perturbations of HD component expression and/or Wnt signaling reduced the stem cell population in the basal layer of esophageal keratinocyte organoids, resulting in alterations in the organoid formation rate, size, morphogenesis, and proliferation–differentiation homeostasis. Furthermore, not only high levels of HDs and low levels of Wnt signaling but also an interplay between HD and Wnt signaling defined the stem cells of the basal layer. Hence, HDs and Wnt signaling are critical determinants for defining the stem cells of the basal layer required for tissue homeostasis in mammalian esophagi.展开更多
基金the NIH/NIDCR under awards R01DE026117(CA)F30DE029105(NGF)+2 种基金and T90DE0227232(NGF)The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.This work was supported by the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Orthopaedic Research Program(PRORP)under Applied Research Award No W81XWH-20-1-0563(CA)The U.S.Army Medical Research Acquisition Activity,839 Chandler Street,Fort Detrick MD 21702-5014 is the awarding and administering acquisition office.Opinions,interpretations,conclusions,and recommendations are those of the authors and are not necessarily endorsed by the Department of Defense.The work was also supported by a 3M Science and Technology Fellowship(NGF).The funding bodies had no role in study design,the collection,analysis and interpretation of data, in the writing of the report, and in the decision to submit the article for publication. CA acknowledges support from the Fundaci´o Bosch Aymerich through a FBA-BIST-UIC fellowship. IBEC is a member of the CERCA Programme/Generalitat de Catalunya.
文摘The percutaneous device dilemma describes etiological factors, centered around the disrupted epithelial tissue surrounding non-remodelable devices, that contribute to rampant percutaneous device infection. Natural percutaneous organs, in particular their extracellular matrix mediating the “device”/epithelium interface, serve as exquisite examples to inspire longer lasting long-term percutaneous device design. For example, the tooth’s imperviousness to infection is mediated by the epithelium directly surrounding it, the junctional epithelium (JE). The hallmark feature of JE is formation of hemidesmosomes, cell/matrix adhesive structures that attach surrounding oral gingiva to the tooth’s enamel through a basement membrane. Here, the authors survey the multifaceted functions of the JE, emphasizing the role of the matrix, with a particular focus on hemidesmosomes and their five main components. The authors highlight the known (and unknown) effects dental implant - as a model percutaneous device - placement has on JE regeneration and synthesize this information for application to other percutaneous devices. The authors conclude with a summary of bioengineering strategies aimed at solving the percutaneous device dilemma and invigorating greater collaboration between clinicians, bioengineers, and matrix biologists.
基金This work was supported by the National Natural Science Foundation of China(NSFC)(81972572 to W.J.)the Chinese Academy of Medical Sciences(CAMS)Innovation Fund for Medical Sciences(CIFMS)(2021-I2M-1-014 to Xiying Yu).
文摘Somatic stem cells are essential for the maintenance of tissue homeostasis. Despite its importance, how the esophageal stratified squamous epithelium executes its self-renewal and maintenance remains elusive. In this study, using 5-bromo-2′-deoxyuridine label-chase in rats in vivo and rat esophageal organoids in vitro together with genome-wide DNA methylation and single-cell RNA sequencing, we identified a slow-cycling/quiescent stem cell population that contained high levels of hemidesmosomes (HDs) and low levels of Wnt signaling localized spatially and randomly at the basal layer of the esophageal epithelium. Pseudotime cell trajectory analysis indicated that tissue cells originated from quiescent basal stem cells in the basal layer. Perturbations of HD component expression and/or Wnt signaling reduced the stem cell population in the basal layer of esophageal keratinocyte organoids, resulting in alterations in the organoid formation rate, size, morphogenesis, and proliferation–differentiation homeostasis. Furthermore, not only high levels of HDs and low levels of Wnt signaling but also an interplay between HD and Wnt signaling defined the stem cells of the basal layer. Hence, HDs and Wnt signaling are critical determinants for defining the stem cells of the basal layer required for tissue homeostasis in mammalian esophagi.