The two control methods, namely the general-control and the quadrature-control modes for HRG under force-rebalance mode were introduced firstly. Then the azimuth of antinode on the hemispherical resonator was deduced....The two control methods, namely the general-control and the quadrature-control modes for HRG under force-rebalance mode were introduced firstly. Then the azimuth of antinode on the hemispherical resonator was deduced. The dynamics equations of resonator under the nonuniformity of density distribution were established by way of Bubonov-Galerkin method which is commonly used for solution of differential equations, and the state equation was established through the dynamics equations. The analytic solutions of the vibration displacement and the velocity were achieved by solving the state equation, and then the ratio of rebalance excitation to primary excitation was derived under the two working modes, thus the estimation of input angular rate of HRG were obtained. By comparing and calculating these two modes, the error caused by resonator's machining defects can be greatly inhibited under quadrature-control, and the fourth harmonic density error's tolerance were calculated to ensure the accuracy of HRG under these two modes.展开更多
This paper makes detailed analyses tor the flexural vibration (frequency) of the hemispherical shell and presents the varying laws of frequency with the rarving boundary angles and the wall thickness of the above shel...This paper makes detailed analyses tor the flexural vibration (frequency) of the hemispherical shell and presents the varying laws of frequency with the rarving boundary angles and the wall thickness of the above shell, It is an important value to develop the instrument, such as hemispherical resonator gyro (HRG), whose sensing component is a hemispherical shell.展开更多
基金Sponsored by the National Defense Advanced Research Project(Grant No.51309050601)
文摘The two control methods, namely the general-control and the quadrature-control modes for HRG under force-rebalance mode were introduced firstly. Then the azimuth of antinode on the hemispherical resonator was deduced. The dynamics equations of resonator under the nonuniformity of density distribution were established by way of Bubonov-Galerkin method which is commonly used for solution of differential equations, and the state equation was established through the dynamics equations. The analytic solutions of the vibration displacement and the velocity were achieved by solving the state equation, and then the ratio of rebalance excitation to primary excitation was derived under the two working modes, thus the estimation of input angular rate of HRG were obtained. By comparing and calculating these two modes, the error caused by resonator's machining defects can be greatly inhibited under quadrature-control, and the fourth harmonic density error's tolerance were calculated to ensure the accuracy of HRG under these two modes.
基金Projected supported by the National Natural Science Foundation of China
文摘This paper makes detailed analyses tor the flexural vibration (frequency) of the hemispherical shell and presents the varying laws of frequency with the rarving boundary angles and the wall thickness of the above shell, It is an important value to develop the instrument, such as hemispherical resonator gyro (HRG), whose sensing component is a hemispherical shell.