A period of extreme rainfall occurred from 17 to 22 July 2021 in Henan Province of China where the accumulated precipitation in the 6-day period exceeded 1000 mm, which is more than the mean annual precipitation in th...A period of extreme rainfall occurred from 17 to 22 July 2021 in Henan Province of China where the accumulated precipitation in the 6-day period exceeded 1000 mm, which is more than the mean annual precipitation in the region. The rainfall was particularly intense on 20 July 2021, especially over Zhengzhou City, the capital of Henan Province and home to more than 10 million people. Hourly rainfall of 201.9 mm was measured at a station in Zhengzhou, breaking the station hourly rainfall record for all of China's Mainland. Major urban flooding occurred in Zhengzhou, leading to submerged subway trains and city road tunnels.展开更多
Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous r...Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous research has paid relatively little attention to the interference of environmental factors and drought on the growth of winter wheat.Therefore,there is an urgent need for more effective methods to explore the inherent relationship between these factors and crop yield,making precise yield prediction increasingly important.This study was based on four type of indicators including meteorological,crop growth status,environmental,and drought index,from October 2003 to June 2019 in Henan Province as the basic data for predicting winter wheat yield.Using the sparrow search al-gorithm combined with random forest(SSA-RF)under different input indicators,accuracy of winter wheat yield estimation was calcu-lated.The estimation accuracy of SSA-RF was compared with partial least squares regression(PLSR),extreme gradient boosting(XG-Boost),and random forest(RF)models.Finally,the determined optimal yield estimation method was used to predict winter wheat yield in three typical years.Following are the findings:1)the SSA-RF demonstrates superior performance in estimating winter wheat yield compared to other algorithms.The best yield estimation method is achieved by four types indicators’composition with SSA-RF)(R^(2)=0.805,RRMSE=9.9%.2)Crops growth status and environmental indicators play significant roles in wheat yield estimation,accounting for 46%and 22%of the yield importance among all indicators,respectively.3)Selecting indicators from October to April of the follow-ing year yielded the highest accuracy in winter wheat yield estimation,with an R^(2)of 0.826 and an RMSE of 9.0%.Yield estimates can be completed two months before the winter wheat harvest in June.4)The predicted performance will be slightly affected by severe drought.Compared with severe drought year(2011)(R^(2)=0.680)and normal year(2017)(R^(2)=0.790),the SSA-RF model has higher prediction accuracy for wet year(2018)(R^(2)=0.820).This study could provide an innovative approach for remote sensing estimation of winter wheat yield.yield.展开更多
This paper examines how the adoption of cloud computing affects the relationship between the technical and environmental capabilities of small and medium-sized enterprises(SMEs)in the tourism industry in Henan Provinc...This paper examines how the adoption of cloud computing affects the relationship between the technical and environmental capabilities of small and medium-sized enterprises(SMEs)in the tourism industry in Henan Province,China,thereby promoting the stable and sustainable development of the tourism industry,combining the laws of tourism market development,vigorously constructing a smart tourism project,guiding tourism cloud service providers to strengthen the cooperation and contact with the market’s tourism enterprises,introducing and utilizing cloud computing technology,optimizing and improving the functions of various tourism services of the enterprises,and enhancing the processing and analysis of enterprise-related data to provide tourism information.Strengthen the processing and analysis of enterprise-related data to provide tourism information,and further study the adoption of cloud computing and its impact on small and medium-sized enterprises(SMEs)in terms of technology and business environment knowledge,so as to make the best enterprise management decisions and realize the overall enhancement of the enterprise’s tourism brand value.展开更多
Since the age of digital intelligence,the government has introduced policies to actively promote the intelligent transformation of grassroots public cultural services.Based on the investigation and analysis of the dev...Since the age of digital intelligence,the government has introduced policies to actively promote the intelligent transformation of grassroots public cultural services.Based on the investigation and analysis of the development status quo of grassroots libraries in Henan Province,we put forward the path of high-quality development of grassroots libraries in Henan,namely,improving the mechanism and system,leading with digital intelligence technology,empowering by Yellow River culture(the heritage and values rooted in the history and traditions of the Yellow River region),and driven by users’demand.展开更多
A record-breaking heavy rainfall event that occurred in Zhengzhou,Henan province during 19–21 July 2021 is simulated using the Weather Research and Forecasting Model,and the large-scale precipitation efficiency(LSPE)...A record-breaking heavy rainfall event that occurred in Zhengzhou,Henan province during 19–21 July 2021 is simulated using the Weather Research and Forecasting Model,and the large-scale precipitation efficiency(LSPE)and cloud-microphysical precipitation efficiency(CMPE)of the rainfall are analyzed based on the model results.Then,the key physical factors that influenced LSPE and CMPE,and the possible mechanisms for the extreme rainfall over Zhengzhou are explored.Results show that water vapor flux convergence was the key factor that influenced LSPE.Water vapor was transported by the southeasterly winds between Typhoon In-Fa(2021)and the subtropical high,and the southerly flow of Typhoon Cempaka(2021),and converged in Zhengzhou due to the blocking by the Taihang and Funiu Mountains in western Henan province.Strong moisture convergence centers were formed on the windward slope of the mountains,which led to high LSPE in Zhengzhou.From the perspective of CMPE,the net consumption of water vapor by microphysical processes was the key factor that influenced CMPE.Quantitative budget analysis suggests that water vapor was mainly converted to cloud water and ice-phase particles and then transformed to raindrops through melting of graupel and accretion of cloud water by rainwater during the heavy precipitation stage.The dry intrusion in the middle and upper levels over Zhengzhou made the high potential vorticity descend from the upper troposphere and enhanced the convective instability.Moreover,the intrusion of cold and dry air resulted in the supersaturation and condensation of water vapor,which contributed to the heavy rainfall in Zhengzhou.展开更多
Assimilation of the Advanced Geostationary Radiance Imager(AGRI)clear-sky radiance in a regional model is performed.The forecasting effectiveness of the assimilation of two water vapor(WV)channels with conventional ob...Assimilation of the Advanced Geostationary Radiance Imager(AGRI)clear-sky radiance in a regional model is performed.The forecasting effectiveness of the assimilation of two water vapor(WV)channels with conventional observations for the“21·7”Henan extremely heavy rainfall is analyzed and compared with a baseline test that assimilates only conventional observations in this study.The results show that the 24-h cumulative precipitation forecast by the assimilation experiment with the addition of the AGRI exceeds 500 mm,compared to a maximum value of 532.6 mm measured by the national meteorological stations,and that the location of the maximum precipitation is consistent with the observations.The results for the short periods of intense precipitation processes are that the simulation of the location and intensity of the 3-h cumulative precipitation is also relatively accurate.The analysis increment shows that the main difference between the two sets of assimilation experiments is over the ocean due to the additional ocean observations provided by FY-4A,which compensates for the lack of ocean observations.The assimilation of satellite data adjusts the vertical and horizontal wind fields over the ocean by adjusting the atmospheric temperature and humidity,which ultimately results in a narrower and stronger WV transport path to the center of heavy precipitation in Zhengzhou in the lower troposphere.Conversely,the WV convergence and upward motion in the control experiment are more dispersed;therefore,the precipitation centers are also correspondingly more dispersed.展开更多
With accelerated urbanization and climate change,urban flooding is becoming more and more serious.Flood risk assessment is an important task for flood management,so it is crucial to map the spatial and temporal distri...With accelerated urbanization and climate change,urban flooding is becoming more and more serious.Flood risk assessment is an important task for flood management,so it is crucial to map the spatial and temporal distribution of flood risk.This paper proposed an urban flood risk assessment method that takes into account the influences of hazard,vulnerability,and exposure,by constructing a multi-index urban flood risk assessment framework based on Geographic Information System(GIS).To determine the weight values of urban flood risk index factors,we used the analytic hierarchy process(AHP).Also,we plotted the temporal and spatial distribution maps of flood risk in Zhengzhou City in 2000,2005,2010,2015,and 2020.The analysis results showed that,the proportion of very high and high flood risk zone in Zhengzhou City was 1.362%,5.270%,4.936%,12.151%,and 24.236%in 2000,2005,2010,2015,and 2020,respectively.It is observed that the area of high flood risk zones in Zhengzhou City showed a trend of increasing and expanding,of which Dengfeng City,Xinzheng City,Xinmi City,and Zhongmu County had the fastest growth rate and the most obvious increase.The flood risk of Zhengzhou City has been expanding with the development of urbanization.The method is adapted to Zhengzhou City and will have good adaptability in other research areas,and its risk assessment results can provide a scientific reference for urban flood management personnel.In the future,the accuracy of flood risk assessment can be further improved by promoting the accuracy of basic data and reasonably determining the weight values of index factors.The risk zoning map can better reflect the risk distribution and provide a scientific basis for early warning of flood prevention and drainage.展开更多
The spatial form of urbanization in China has developed from single-core city expansion to a multi-center metropolitan area.However,little attention has been paid to the growth process of the emerging metropolitan are...The spatial form of urbanization in China has developed from single-core city expansion to a multi-center metropolitan area.However,little attention has been paid to the growth process of the emerging metropolitan area situated in major grain producing locations in the central China.Taking the Zhengzhou metropolitan area(ZZMA)as a case study,we developed an inverse S-shape model to characterize the spatial distribution of urban land density,and constructed an urban expansion core index,urban expansion intensity index,and urban compactness index to quantify the spatial structure change that has taken place from 1978 to 2017 during the process of urban expansion.Moreover,cropland contribution rate(CR)was constructed to evaluate the impacts of urban expansion on croplands.We uncovered four key findings.First,over the past 40 yr,the ZZMA has experienced dramatic expansion,and the central city of Zhengzhou expanded faster than other cities.The gravity centers of urban expansion of surrounding cities were moving toward to Zhengzhou City.Second,the urban land density decreased with the distance from the city center to the outskirts.As the only large city,Zhengzhou has experienced the fastest and most compact centralized urban expansion,especially after 2000,while other medium-and small-sized cities have experienced low-intensity decentralized expansion.Third,the urban core has been gradually expanding outward.From 1978 to 2017,the hot-zone of urban growth has moved progressively with the acceleration of urbanization.All cities except Jiaozuo had a single peak in different periods.Forth,the cities in national core grain-producing areas has higher cropland contribution rates and lower urban expansion areas,which was closely related to cropland protection.Further analysis showed that large city was relatively better positioned than smaller cities in the efficiency of their urban infrastructure and the effectiveness of wealth creation efficiency in the urbanized area could be tested in all cities,and the policy factor seemed to play an important role in the urban expansion process.展开更多
The journey of mathematics at Henan University traces back to the inception of the Department of Mathematics and Physics at Zhongzhou University in 1923.Over the course of a century,scholars across generations have sh...The journey of mathematics at Henan University traces back to the inception of the Department of Mathematics and Physics at Zhongzhou University in 1923.Over the course of a century,scholars across generations have shared their aspirations with our nation,shaping the destiny of our country.Through unwavering dedication,they have continuously enhanced the quality of mathematical education and laid the groundwork for an enduring academic legacy.展开更多
Based on the data from the China National Meteorological Station and the fifth-generation reanalysis data of the European Center for Medium-Range Weather Forecasts, we investigated and examined the precipitation, circ...Based on the data from the China National Meteorological Station and the fifth-generation reanalysis data of the European Center for Medium-Range Weather Forecasts, we investigated and examined the precipitation, circulation, and dynamic conditions of the rainstorm in Henan in July 2021. The results show that: 1) This precipitation is of very heavy rainfall level, beginning on the 19<sup>th</sup> and lasting until the 21<sup>st</sup>, with a 3-hour cumulative precipitation of more than 200 mm at Zhengzhou station at 19:00 on the 20<sup>th</sup>. The major focus of this precipitation is in Zhengzhou, Henan Province, and it also radiates to Jiaozuo, Xinxiang, Kaifeng, Xuchang, Pingdingshan, Luoyang, Luohe, and other places. 2) The Western Pacific Subtropical High (WPSH), typhoons “In-Fa” and “Cempaka”, as well as the less dynamic strengthening of the Eurasian trough ridge structure, all contributed to the short-term maintenance of the favorable large-scale circulation background and water vapor conditions for this rainstorm in Henan. 3) The vertical structure of low-level convergence and high-level dispersion near Zhengzhou, together with the topographic blocking and lifting impact, produced favorable dynamic lifting conditions for this rainstorm.展开更多
To learn more about the unusually heavy rainfall in central China, this research uses the monthly climatic data, weather map information and US NCEP re-analysis data to analyze the atmospheric circulation, precipitati...To learn more about the unusually heavy rainfall in central China, this research uses the monthly climatic data, weather map information and US NCEP re-analysis data to analyze the atmospheric circulation, precipitation and weather situation of this extreme precipitation weather process in Henan during July 17-22, 2021. The results show that the precipitation process is affected by the joint action of the subtropical high, the continental high, the low vortex, the low-level jet, the typhoon “In-fa” and other multi-scale systems in the middle and low latitudes. This precipitation process was also affected by the topographic uplift and blocking of Taihang Mountain and Funiu Mountain.展开更多
Since China’s reform and opening up in 1978,the acceleration of industrialization and urbanization in China had led to dramatic changes in the pattern of urban-rural land use.In this paper,we focused on the rural ind...Since China’s reform and opening up in 1978,the acceleration of industrialization and urbanization in China had led to dramatic changes in the pattern of urban-rural land use.In this paper,we focused on the rural industrialized areas in central China(Xinxiang County and Changyuan City of Henan Province).We used the average nearest neighbor index,spatial statistical analysis,and a structural equation model to analyze the spatiotemporal evolution and influencing factors of urban-rural construction land based on multisource spatial data and survey data.The results showed that:1)from 1975 to 2019,the spatial distribution of urban-rural construction land in rural industrialized areas had evolved from homogeneous distribution to local agglomeration.In terms of comparative analysis of cases,the spatial distribution of urban-rural construction land in Changyuan City had shown a trend from diffusion to agglomeration,and Xinxiang County had overall shown a spatial change from homogenization to agglomeration and then to regional integration development.2)The hot spots with increased urban-rural construction land significantly expanded,and they had a high degree of spatial overlap with industrial development.Among them,Xinxiang County was concentrated in central and marginal areas,and Changyuan was mainly concentrated in central urban areas.3)From the evolution of spatial proximity of urban-rural construction land,rural industrialized areas generally decline,showing the characteristics of internal differentiation in the rate of change.4)Industrial development,social economy,the policy environment,and urban development played a positive role in promoting the expansion of urban-rural construction land in rural industrialized areas.To promote the optimal use of regional land and the integrated development of urban-rural areas,we should combine the advantages of regional endowment,formulate development strategies according to local conditions,and adjust the way that land is used in a timely manner.展开更多
Up till now,Henan has established a relatively perfect Intangible Cultural Heritage listing system and protection system,which lays a foundation for the digitalization of Intangible Cultural Heritage.Meanwhile,Henan h...Up till now,Henan has established a relatively perfect Intangible Cultural Heritage listing system and protection system,which lays a foundation for the digitalization of Intangible Cultural Heritage.Meanwhile,Henan has vigorously carried out research on the activation of digital Intangible Cultural Heritage,resulting in improving the capabilities of digital application of Intangible Cultural Heritage.展开更多
From July 30 to August 5,2023,the Yellow River Tourism Overseas Promotion Season 2023 launched the"Henan Overseas Promotion Week",presenting to the global public"Traveling to Henan,Understanding China-H...From July 30 to August 5,2023,the Yellow River Tourism Overseas Promotion Season 2023 launched the"Henan Overseas Promotion Week",presenting to the global public"Traveling to Henan,Understanding China-Henan Province Characteristic Tourism Cultural Resources Photo Exhibition"and"Traveling to Henan.展开更多
Due to the differences in disciplines and regional cultural spirits,the campus landscape of Chinese universities has varying cultural connotations.Campus landscape is not only a reflection of regional school history a...Due to the differences in disciplines and regional cultural spirits,the campus landscape of Chinese universities has varying cultural connotations.Campus landscape is not only a reflection of regional school history and culture,but also a potential factor affecting students'ideology and values.At present,some colleges and universities in China only concern and consider the visual impact effect of campus landscape construction,while others take landscape planning and construction as an accessory of the main building,which seriously affects the soul guiding role of campus culture in campus landscape.The internal and external landscape pattern of Henan University of Science and Technology with landscape road and water system as the framework,as well as core scenic spots with rich cultural connotations,such as“Peony Dinghu map”,“Yueqin Lake”,embody the university history and culture,the characteristics of western Henan architecture and the specific campus culture positioning,providing a stark example for landscape planning and design of other colleges and universities in the future.展开更多
文摘A period of extreme rainfall occurred from 17 to 22 July 2021 in Henan Province of China where the accumulated precipitation in the 6-day period exceeded 1000 mm, which is more than the mean annual precipitation in the region. The rainfall was particularly intense on 20 July 2021, especially over Zhengzhou City, the capital of Henan Province and home to more than 10 million people. Hourly rainfall of 201.9 mm was measured at a station in Zhengzhou, breaking the station hourly rainfall record for all of China's Mainland. Major urban flooding occurred in Zhengzhou, leading to submerged subway trains and city road tunnels.
基金Under the auspices of National Natural Science Foundation of China(No.52079103)。
文摘Precise and timely prediction of crop yields is crucial for food security and the development of agricultural policies.However,crop yield is influenced by multiple factors within complex growth environments.Previous research has paid relatively little attention to the interference of environmental factors and drought on the growth of winter wheat.Therefore,there is an urgent need for more effective methods to explore the inherent relationship between these factors and crop yield,making precise yield prediction increasingly important.This study was based on four type of indicators including meteorological,crop growth status,environmental,and drought index,from October 2003 to June 2019 in Henan Province as the basic data for predicting winter wheat yield.Using the sparrow search al-gorithm combined with random forest(SSA-RF)under different input indicators,accuracy of winter wheat yield estimation was calcu-lated.The estimation accuracy of SSA-RF was compared with partial least squares regression(PLSR),extreme gradient boosting(XG-Boost),and random forest(RF)models.Finally,the determined optimal yield estimation method was used to predict winter wheat yield in three typical years.Following are the findings:1)the SSA-RF demonstrates superior performance in estimating winter wheat yield compared to other algorithms.The best yield estimation method is achieved by four types indicators’composition with SSA-RF)(R^(2)=0.805,RRMSE=9.9%.2)Crops growth status and environmental indicators play significant roles in wheat yield estimation,accounting for 46%and 22%of the yield importance among all indicators,respectively.3)Selecting indicators from October to April of the follow-ing year yielded the highest accuracy in winter wheat yield estimation,with an R^(2)of 0.826 and an RMSE of 9.0%.Yield estimates can be completed two months before the winter wheat harvest in June.4)The predicted performance will be slightly affected by severe drought.Compared with severe drought year(2011)(R^(2)=0.680)and normal year(2017)(R^(2)=0.790),the SSA-RF model has higher prediction accuracy for wet year(2018)(R^(2)=0.820).This study could provide an innovative approach for remote sensing estimation of winter wheat yield.yield.
文摘This paper examines how the adoption of cloud computing affects the relationship between the technical and environmental capabilities of small and medium-sized enterprises(SMEs)in the tourism industry in Henan Province,China,thereby promoting the stable and sustainable development of the tourism industry,combining the laws of tourism market development,vigorously constructing a smart tourism project,guiding tourism cloud service providers to strengthen the cooperation and contact with the market’s tourism enterprises,introducing and utilizing cloud computing technology,optimizing and improving the functions of various tourism services of the enterprises,and enhancing the processing and analysis of enterprise-related data to provide tourism information.Strengthen the processing and analysis of enterprise-related data to provide tourism information,and further study the adoption of cloud computing and its impact on small and medium-sized enterprises(SMEs)in terms of technology and business environment knowledge,so as to make the best enterprise management decisions and realize the overall enhancement of the enterprise’s tourism brand value.
文摘Since the age of digital intelligence,the government has introduced policies to actively promote the intelligent transformation of grassroots public cultural services.Based on the investigation and analysis of the development status quo of grassroots libraries in Henan Province,we put forward the path of high-quality development of grassroots libraries in Henan,namely,improving the mechanism and system,leading with digital intelligence technology,empowering by Yellow River culture(the heritage and values rooted in the history and traditions of the Yellow River region),and driven by users’demand.
基金supported by the National Key Research and Development Program of China(Grant Nos.2018YFC1506801 and 2018YFF0300102)the National Natural Science Foundation of China(NSFC)(Grant No.42105013).
文摘A record-breaking heavy rainfall event that occurred in Zhengzhou,Henan province during 19–21 July 2021 is simulated using the Weather Research and Forecasting Model,and the large-scale precipitation efficiency(LSPE)and cloud-microphysical precipitation efficiency(CMPE)of the rainfall are analyzed based on the model results.Then,the key physical factors that influenced LSPE and CMPE,and the possible mechanisms for the extreme rainfall over Zhengzhou are explored.Results show that water vapor flux convergence was the key factor that influenced LSPE.Water vapor was transported by the southeasterly winds between Typhoon In-Fa(2021)and the subtropical high,and the southerly flow of Typhoon Cempaka(2021),and converged in Zhengzhou due to the blocking by the Taihang and Funiu Mountains in western Henan province.Strong moisture convergence centers were formed on the windward slope of the mountains,which led to high LSPE in Zhengzhou.From the perspective of CMPE,the net consumption of water vapor by microphysical processes was the key factor that influenced CMPE.Quantitative budget analysis suggests that water vapor was mainly converted to cloud water and ice-phase particles and then transformed to raindrops through melting of graupel and accretion of cloud water by rainwater during the heavy precipitation stage.The dry intrusion in the middle and upper levels over Zhengzhou made the high potential vorticity descend from the upper troposphere and enhanced the convective instability.Moreover,the intrusion of cold and dry air resulted in the supersaturation and condensation of water vapor,which contributed to the heavy rainfall in Zhengzhou.
基金supported by the National Key R&D Program of China(Grant Nos.2017YFC1501803 and 2017YFC1502102)。
文摘Assimilation of the Advanced Geostationary Radiance Imager(AGRI)clear-sky radiance in a regional model is performed.The forecasting effectiveness of the assimilation of two water vapor(WV)channels with conventional observations for the“21·7”Henan extremely heavy rainfall is analyzed and compared with a baseline test that assimilates only conventional observations in this study.The results show that the 24-h cumulative precipitation forecast by the assimilation experiment with the addition of the AGRI exceeds 500 mm,compared to a maximum value of 532.6 mm measured by the national meteorological stations,and that the location of the maximum precipitation is consistent with the observations.The results for the short periods of intense precipitation processes are that the simulation of the location and intensity of the 3-h cumulative precipitation is also relatively accurate.The analysis increment shows that the main difference between the two sets of assimilation experiments is over the ocean due to the additional ocean observations provided by FY-4A,which compensates for the lack of ocean observations.The assimilation of satellite data adjusts the vertical and horizontal wind fields over the ocean by adjusting the atmospheric temperature and humidity,which ultimately results in a narrower and stronger WV transport path to the center of heavy precipitation in Zhengzhou in the lower troposphere.Conversely,the WV convergence and upward motion in the control experiment are more dispersed;therefore,the precipitation centers are also correspondingly more dispersed.
基金the National Natural Science Foundation of China(52192671,51979285)the Research Fund of the State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin(SKL2022TS11)。
文摘With accelerated urbanization and climate change,urban flooding is becoming more and more serious.Flood risk assessment is an important task for flood management,so it is crucial to map the spatial and temporal distribution of flood risk.This paper proposed an urban flood risk assessment method that takes into account the influences of hazard,vulnerability,and exposure,by constructing a multi-index urban flood risk assessment framework based on Geographic Information System(GIS).To determine the weight values of urban flood risk index factors,we used the analytic hierarchy process(AHP).Also,we plotted the temporal and spatial distribution maps of flood risk in Zhengzhou City in 2000,2005,2010,2015,and 2020.The analysis results showed that,the proportion of very high and high flood risk zone in Zhengzhou City was 1.362%,5.270%,4.936%,12.151%,and 24.236%in 2000,2005,2010,2015,and 2020,respectively.It is observed that the area of high flood risk zones in Zhengzhou City showed a trend of increasing and expanding,of which Dengfeng City,Xinzheng City,Xinmi City,and Zhongmu County had the fastest growth rate and the most obvious increase.The flood risk of Zhengzhou City has been expanding with the development of urbanization.The method is adapted to Zhengzhou City and will have good adaptability in other research areas,and its risk assessment results can provide a scientific reference for urban flood management personnel.In the future,the accuracy of flood risk assessment can be further improved by promoting the accuracy of basic data and reasonably determining the weight values of index factors.The risk zoning map can better reflect the risk distribution and provide a scientific basis for early warning of flood prevention and drainage.
基金Under the auspices of National Natural Science Foundation of China(No.41971274)the Innovation Research Team of Henan Provincial University(No.2021-CXTD-08,2022-CXTD-02)the Scientific and Technological Innovation Team of Universities in Henan Province(No.22IRTSTHN008)。
文摘The spatial form of urbanization in China has developed from single-core city expansion to a multi-center metropolitan area.However,little attention has been paid to the growth process of the emerging metropolitan area situated in major grain producing locations in the central China.Taking the Zhengzhou metropolitan area(ZZMA)as a case study,we developed an inverse S-shape model to characterize the spatial distribution of urban land density,and constructed an urban expansion core index,urban expansion intensity index,and urban compactness index to quantify the spatial structure change that has taken place from 1978 to 2017 during the process of urban expansion.Moreover,cropland contribution rate(CR)was constructed to evaluate the impacts of urban expansion on croplands.We uncovered four key findings.First,over the past 40 yr,the ZZMA has experienced dramatic expansion,and the central city of Zhengzhou expanded faster than other cities.The gravity centers of urban expansion of surrounding cities were moving toward to Zhengzhou City.Second,the urban land density decreased with the distance from the city center to the outskirts.As the only large city,Zhengzhou has experienced the fastest and most compact centralized urban expansion,especially after 2000,while other medium-and small-sized cities have experienced low-intensity decentralized expansion.Third,the urban core has been gradually expanding outward.From 1978 to 2017,the hot-zone of urban growth has moved progressively with the acceleration of urbanization.All cities except Jiaozuo had a single peak in different periods.Forth,the cities in national core grain-producing areas has higher cropland contribution rates and lower urban expansion areas,which was closely related to cropland protection.Further analysis showed that large city was relatively better positioned than smaller cities in the efficiency of their urban infrastructure and the effectiveness of wealth creation efficiency in the urbanized area could be tested in all cities,and the policy factor seemed to play an important role in the urban expansion process.
文摘The journey of mathematics at Henan University traces back to the inception of the Department of Mathematics and Physics at Zhongzhou University in 1923.Over the course of a century,scholars across generations have shared their aspirations with our nation,shaping the destiny of our country.Through unwavering dedication,they have continuously enhanced the quality of mathematical education and laid the groundwork for an enduring academic legacy.
文摘Based on the data from the China National Meteorological Station and the fifth-generation reanalysis data of the European Center for Medium-Range Weather Forecasts, we investigated and examined the precipitation, circulation, and dynamic conditions of the rainstorm in Henan in July 2021. The results show that: 1) This precipitation is of very heavy rainfall level, beginning on the 19<sup>th</sup> and lasting until the 21<sup>st</sup>, with a 3-hour cumulative precipitation of more than 200 mm at Zhengzhou station at 19:00 on the 20<sup>th</sup>. The major focus of this precipitation is in Zhengzhou, Henan Province, and it also radiates to Jiaozuo, Xinxiang, Kaifeng, Xuchang, Pingdingshan, Luoyang, Luohe, and other places. 2) The Western Pacific Subtropical High (WPSH), typhoons “In-Fa” and “Cempaka”, as well as the less dynamic strengthening of the Eurasian trough ridge structure, all contributed to the short-term maintenance of the favorable large-scale circulation background and water vapor conditions for this rainstorm in Henan. 3) The vertical structure of low-level convergence and high-level dispersion near Zhengzhou, together with the topographic blocking and lifting impact, produced favorable dynamic lifting conditions for this rainstorm.
文摘To learn more about the unusually heavy rainfall in central China, this research uses the monthly climatic data, weather map information and US NCEP re-analysis data to analyze the atmospheric circulation, precipitation and weather situation of this extreme precipitation weather process in Henan during July 17-22, 2021. The results show that the precipitation process is affected by the joint action of the subtropical high, the continental high, the low vortex, the low-level jet, the typhoon “In-fa” and other multi-scale systems in the middle and low latitudes. This precipitation process was also affected by the topographic uplift and blocking of Taihang Mountain and Funiu Mountain.
基金Under the auspices of National Natural Science Foundation of China(No.42271225)Research Program Fund for Humanities and Social Sciences of the Ministry of Education of China(No.22YJA790050)+2 种基金Henan Provincial Planning Fund for Philosophy and Social Sciences(No.2022BJJ011)Postgraduate Cultivating Innovation Action Plan of Henan University(No.SYLYC2022014)Henan University of Economics and Law Huang Tingfang/Xinhe Young Scholars Program(No.13)。
文摘Since China’s reform and opening up in 1978,the acceleration of industrialization and urbanization in China had led to dramatic changes in the pattern of urban-rural land use.In this paper,we focused on the rural industrialized areas in central China(Xinxiang County and Changyuan City of Henan Province).We used the average nearest neighbor index,spatial statistical analysis,and a structural equation model to analyze the spatiotemporal evolution and influencing factors of urban-rural construction land based on multisource spatial data and survey data.The results showed that:1)from 1975 to 2019,the spatial distribution of urban-rural construction land in rural industrialized areas had evolved from homogeneous distribution to local agglomeration.In terms of comparative analysis of cases,the spatial distribution of urban-rural construction land in Changyuan City had shown a trend from diffusion to agglomeration,and Xinxiang County had overall shown a spatial change from homogenization to agglomeration and then to regional integration development.2)The hot spots with increased urban-rural construction land significantly expanded,and they had a high degree of spatial overlap with industrial development.Among them,Xinxiang County was concentrated in central and marginal areas,and Changyuan was mainly concentrated in central urban areas.3)From the evolution of spatial proximity of urban-rural construction land,rural industrialized areas generally decline,showing the characteristics of internal differentiation in the rate of change.4)Industrial development,social economy,the policy environment,and urban development played a positive role in promoting the expansion of urban-rural construction land in rural industrialized areas.To promote the optimal use of regional land and the integrated development of urban-rural areas,we should combine the advantages of regional endowment,formulate development strategies according to local conditions,and adjust the way that land is used in a timely manner.
文摘Up till now,Henan has established a relatively perfect Intangible Cultural Heritage listing system and protection system,which lays a foundation for the digitalization of Intangible Cultural Heritage.Meanwhile,Henan has vigorously carried out research on the activation of digital Intangible Cultural Heritage,resulting in improving the capabilities of digital application of Intangible Cultural Heritage.
文摘From July 30 to August 5,2023,the Yellow River Tourism Overseas Promotion Season 2023 launched the"Henan Overseas Promotion Week",presenting to the global public"Traveling to Henan,Understanding China-Henan Province Characteristic Tourism Cultural Resources Photo Exhibition"and"Traveling to Henan.
基金Sponsored by National Natural Science Foundation of China(32271848)。
文摘Due to the differences in disciplines and regional cultural spirits,the campus landscape of Chinese universities has varying cultural connotations.Campus landscape is not only a reflection of regional school history and culture,but also a potential factor affecting students'ideology and values.At present,some colleges and universities in China only concern and consider the visual impact effect of campus landscape construction,while others take landscape planning and construction as an accessory of the main building,which seriously affects the soul guiding role of campus culture in campus landscape.The internal and external landscape pattern of Henan University of Science and Technology with landscape road and water system as the framework,as well as core scenic spots with rich cultural connotations,such as“Peony Dinghu map”,“Yueqin Lake”,embody the university history and culture,the characteristics of western Henan architecture and the specific campus culture positioning,providing a stark example for landscape planning and design of other colleges and universities in the future.