Climatic conditions are difficult to obtain in high mountain regions due to few meteorological stations and, if any, their poorly representative location designed for convenient operation. Fortunately, it has been sho...Climatic conditions are difficult to obtain in high mountain regions due to few meteorological stations and, if any, their poorly representative location designed for convenient operation. Fortunately, it has been shown that remote sensing data could be used to estimate near-surface air temperature (Ta) and other climatic conditions. This paper makes use of recorded meteorological data and MODIS data on land surface temperature (Ts) to estimate monthly mean air temperatures in the southeastern Tibetan Plateau and its neighboring areas. A total of 72 weather stations and 84 MODIS images for seven years (2001 to 2007) are used for analysis. Regression analysis and spatio-temporal analysis of monthly mean Ts vs. monthly mean Ta are carried out, showing that recorded Ta is closely related to MODIS Ts in the study region. The regression analysis of monthly mean Ts vs. Ta for every month of all stations shows that monthly mean Ts can be rather accurately used to estimate monthly mean Ta (R2 ranging from 0.62 to 0.90 and standard error between 2.25℃ and 3.23℃). Thirdly, the retrieved monthly mean Ta for the whole study area varies between 1.62℃ (in January, the coldest month) and 17.29℃ (in July, the warmest month), and for the warm season (May-September), it is from 13.1℃ to 17.29℃. Finally, the elevation of isotherms is higher in the central mountain ranges than in the outer margins; the 0℃ isotherm occurs at elevation of about 4500±500 m in October, dropping to 3500±500 m in January, and ascending back to 4500±500 m in May next year. This clearly shows that MODIS Ts data combining with observed data could be used to rather accurately estimate air temperature in mountain regions.展开更多
基金National Natural Science Foundation of China,No.41030528 No.41001278
文摘Climatic conditions are difficult to obtain in high mountain regions due to few meteorological stations and, if any, their poorly representative location designed for convenient operation. Fortunately, it has been shown that remote sensing data could be used to estimate near-surface air temperature (Ta) and other climatic conditions. This paper makes use of recorded meteorological data and MODIS data on land surface temperature (Ts) to estimate monthly mean air temperatures in the southeastern Tibetan Plateau and its neighboring areas. A total of 72 weather stations and 84 MODIS images for seven years (2001 to 2007) are used for analysis. Regression analysis and spatio-temporal analysis of monthly mean Ts vs. monthly mean Ta are carried out, showing that recorded Ta is closely related to MODIS Ts in the study region. The regression analysis of monthly mean Ts vs. Ta for every month of all stations shows that monthly mean Ts can be rather accurately used to estimate monthly mean Ta (R2 ranging from 0.62 to 0.90 and standard error between 2.25℃ and 3.23℃). Thirdly, the retrieved monthly mean Ta for the whole study area varies between 1.62℃ (in January, the coldest month) and 17.29℃ (in July, the warmest month), and for the warm season (May-September), it is from 13.1℃ to 17.29℃. Finally, the elevation of isotherms is higher in the central mountain ranges than in the outer margins; the 0℃ isotherm occurs at elevation of about 4500±500 m in October, dropping to 3500±500 m in January, and ascending back to 4500±500 m in May next year. This clearly shows that MODIS Ts data combining with observed data could be used to rather accurately estimate air temperature in mountain regions.