Little is known about the mechanism of climate-vegetation coverage coupled changes in the Tibetan Plateau(TP)region,which is the most climatically sensitive and ecologically fragile region with the highest terrain in ...Little is known about the mechanism of climate-vegetation coverage coupled changes in the Tibetan Plateau(TP)region,which is the most climatically sensitive and ecologically fragile region with the highest terrain in the world.This study,using multisource datasets(including satellite data and meteorological observations and reanalysis data)revealed the mutual feedback mechanisms between changes in climate(temperature and precipitation)and vegetation coverage in recent decades in the Hengduan Mountains Area(HMA)of the southeastern TP and their influences on climate in the downstream region,the Sichuan Basin(SCB).There is mutual facilitation between rising air temperature and increasing vegetation coverage in the HMA,which is most significant during winter,and then during spring,but insignificant during summer and autumn.Rising temperature significantly enhances local vegetation coverage,and vegetation greening in turn heats the atmosphere via enhancing net heat flux from the surface to the atmosphere.The atmospheric heating anomaly over the HMA thickens the atmospheric column and increases upper air pressure.The high pressure anomaly disperses downstream via the westerly flow,expands across the SCB,and eventually increases the SCB temperature.This effect lasts from winter to the following spring,which may cause the maximum increasing trend of the SCB temperature and vegetation coverage in spring.These results are helpful for estimating future trends in climate and eco-environmental variations in the HMA and SCB under warming scenarios,as well as seasonal forecasting based on the connection between the HMA eco-environment and SCB climate.展开更多
Net primary productivity(NPP), a metric used to define and identify changes in plant communities, is greatly affected by climate change, human activities and other factors. Here, we used the Carnegie-Ames-Stanford App...Net primary productivity(NPP), a metric used to define and identify changes in plant communities, is greatly affected by climate change, human activities and other factors. Here, we used the Carnegie-Ames-Stanford Approach(CASA) model to estimate the NPP of plant communities in Hengduan Mountains area of China, and to explore the relationship between NPP and altitude in this region. We examined the mechanisms underlying vegetation growth responses to climate change and quantitatively assessed the effects of ecological protection measures by partitioning the contributions of climate change and human activities to NPP changes. The results demonstrated that: 1) the average total and annual NPP values over the years were 209.15 Tg C and 468.06 g C/(m2·yr), respectively. Their trend increasingly fluctuated, with spatial distribution strongly linked to altitude(i.e., lower and higher NPP in high altitude and low altitude areas, respectively) and 2400 m represented the marginal altitude for vegetation differentiation; 2) areas where climate was the main factor affecting NPP accounted for 18.2% of the total research area, whereas human activities were the primary factor influencing NPP in 81.8% of the total research area, which indicated that human activity was the main force driving changes in NPP. Areas where climatic factors(i.e., temperature and precipitation) were the main driving factors occupied 13.6%(temperature) and 6.0%(precipitation) of the total research area, respectively. Therefore, the effect of temperature on NPP changes was stronger than that of precipitation; and 3) the majority of NPP residuals from 2001 to 2014 were positive, with human activities playing an active role in determining regional vegetation growth, possibly due to the return of farmland back to forest and natural forest protection. However, this positive trend is decreasing. This clearly shows the periodical nature of ecological projects and a lack of long-term effectiveness.展开更多
基金the National Natural Science Foundation of China(Grant Nos.42205059 and 42005075)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA23090303 and XDB40010302)+1 种基金the State Key Laboratory of Cryospheric Science(Grant No.SKLCS-ZZ-2024 and SKLCS-ZZ-2023)the Key Laboratory of Mountain Hazards and Earth Surface Processes.
文摘Little is known about the mechanism of climate-vegetation coverage coupled changes in the Tibetan Plateau(TP)region,which is the most climatically sensitive and ecologically fragile region with the highest terrain in the world.This study,using multisource datasets(including satellite data and meteorological observations and reanalysis data)revealed the mutual feedback mechanisms between changes in climate(temperature and precipitation)and vegetation coverage in recent decades in the Hengduan Mountains Area(HMA)of the southeastern TP and their influences on climate in the downstream region,the Sichuan Basin(SCB).There is mutual facilitation between rising air temperature and increasing vegetation coverage in the HMA,which is most significant during winter,and then during spring,but insignificant during summer and autumn.Rising temperature significantly enhances local vegetation coverage,and vegetation greening in turn heats the atmosphere via enhancing net heat flux from the surface to the atmosphere.The atmospheric heating anomaly over the HMA thickens the atmospheric column and increases upper air pressure.The high pressure anomaly disperses downstream via the westerly flow,expands across the SCB,and eventually increases the SCB temperature.This effect lasts from winter to the following spring,which may cause the maximum increasing trend of the SCB temperature and vegetation coverage in spring.These results are helpful for estimating future trends in climate and eco-environmental variations in the HMA and SCB under warming scenarios,as well as seasonal forecasting based on the connection between the HMA eco-environment and SCB climate.
基金Under the auspices of National Key Basic Research Program of China(No.2015CB452706)National Natural Science Foundation of China(No.41401198,41571527)+1 种基金Youth Talent Team Program of the Institute of Mountain Hazards and Environment,Chinese Academy of Sciences(No.SDSQB-2015-01)Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2016332)
文摘Net primary productivity(NPP), a metric used to define and identify changes in plant communities, is greatly affected by climate change, human activities and other factors. Here, we used the Carnegie-Ames-Stanford Approach(CASA) model to estimate the NPP of plant communities in Hengduan Mountains area of China, and to explore the relationship between NPP and altitude in this region. We examined the mechanisms underlying vegetation growth responses to climate change and quantitatively assessed the effects of ecological protection measures by partitioning the contributions of climate change and human activities to NPP changes. The results demonstrated that: 1) the average total and annual NPP values over the years were 209.15 Tg C and 468.06 g C/(m2·yr), respectively. Their trend increasingly fluctuated, with spatial distribution strongly linked to altitude(i.e., lower and higher NPP in high altitude and low altitude areas, respectively) and 2400 m represented the marginal altitude for vegetation differentiation; 2) areas where climate was the main factor affecting NPP accounted for 18.2% of the total research area, whereas human activities were the primary factor influencing NPP in 81.8% of the total research area, which indicated that human activity was the main force driving changes in NPP. Areas where climatic factors(i.e., temperature and precipitation) were the main driving factors occupied 13.6%(temperature) and 6.0%(precipitation) of the total research area, respectively. Therefore, the effect of temperature on NPP changes was stronger than that of precipitation; and 3) the majority of NPP residuals from 2001 to 2014 were positive, with human activities playing an active role in determining regional vegetation growth, possibly due to the return of farmland back to forest and natural forest protection. However, this positive trend is decreasing. This clearly shows the periodical nature of ecological projects and a lack of long-term effectiveness.