Let R be a finite chain ring with maximal ideal (7) and residue field F,and letγ be of nilpotency index t. To every code C of length n over R, a tower of codes C = (C : γ0) C_ (C: 7) C ... C_ (C: γ2) C_ ...Let R be a finite chain ring with maximal ideal (7) and residue field F,and letγ be of nilpotency index t. To every code C of length n over R, a tower of codes C = (C : γ0) C_ (C: 7) C ... C_ (C: γ2) C_ .-. C_ (C:γ^t-1) can be associated with C, where for any r C R, (C : r) = {e C Rn I re E C}. Using generator elements of the projection of such a tower of codes to the residue field F, we characterize cyclic codes over R. This characterization turns the condition for codes over R to be cyclic into one for codes over the residue field F. Furthermore, we obtain a characterization of cyclic codes over the formal power series ring of a finite chain ring.展开更多
Let C be a free cyclic code over Zp^a and dim pC = k. In the paper, we prove that if the k characteristic generators of C are p-linearly independent then the corresponding nα- k characteristic generators of C^⊥ are ...Let C be a free cyclic code over Zp^a and dim pC = k. In the paper, we prove that if the k characteristic generators of C are p-linearly independent then the corresponding nα- k characteristic generators of C^⊥ are p-linearly independent. We then show that to any trellis that can be constructed from k p-linearly independent characteristic generators of C, there exists a trellis for C^⊥ with the same state-complexity profile, which generalizes the conjecture of Koetter and Vardy to a free cyclic code over Zpo.展开更多
Motivated by Sasaki's work on the extended Hensel construction for solving multivariate algebraic equations, we present a generalized Hensel lifting, which takes advantage of sparsity, for factoring bivariate polynom...Motivated by Sasaki's work on the extended Hensel construction for solving multivariate algebraic equations, we present a generalized Hensel lifting, which takes advantage of sparsity, for factoring bivariate polynomial over the rational number field. Another feature of the factorization algorithm presented in this article is a new recombination method, which can solve the extraneous factor problem before lifting based on numerical linear algebra. Both theoretical analysis and experimental data show that the algorithm is etIicient, especially for sparse bivariate polynomials.展开更多
基金supported by the Natural Science Foundation of Hubei Province (B20114410)the Natural Science Foundation of Hubei Polytechnic University (12xjz14A)
文摘Let R be a finite chain ring with maximal ideal (7) and residue field F,and letγ be of nilpotency index t. To every code C of length n over R, a tower of codes C = (C : γ0) C_ (C: 7) C ... C_ (C: γ2) C_ .-. C_ (C:γ^t-1) can be associated with C, where for any r C R, (C : r) = {e C Rn I re E C}. Using generator elements of the projection of such a tower of codes to the residue field F, we characterize cyclic codes over R. This characterization turns the condition for codes over R to be cyclic into one for codes over the residue field F. Furthermore, we obtain a characterization of cyclic codes over the formal power series ring of a finite chain ring.
基金Supported by the National Natural Science Foundation of China(60673071)
文摘Let C be a free cyclic code over Zp^a and dim pC = k. In the paper, we prove that if the k characteristic generators of C are p-linearly independent then the corresponding nα- k characteristic generators of C^⊥ are p-linearly independent. We then show that to any trellis that can be constructed from k p-linearly independent characteristic generators of C, there exists a trellis for C^⊥ with the same state-complexity profile, which generalizes the conjecture of Koetter and Vardy to a free cyclic code over Zpo.
基金supported by National Natural Science Foundation of China(GrantNos.91118001 and 11170153)National Key Basic Research Project of China(Grant No.2011CB302400)Chongqing Science and Technology Commission Project(Grant No.cstc2013jjys40001)
文摘Motivated by Sasaki's work on the extended Hensel construction for solving multivariate algebraic equations, we present a generalized Hensel lifting, which takes advantage of sparsity, for factoring bivariate polynomial over the rational number field. Another feature of the factorization algorithm presented in this article is a new recombination method, which can solve the extraneous factor problem before lifting based on numerical linear algebra. Both theoretical analysis and experimental data show that the algorithm is etIicient, especially for sparse bivariate polynomials.