利用二阶模糊随机过程均方Henstock-Stieltjes积分的定义和性质,讨论了两类二阶模糊随机过程均方Henstock-Stieltjes积分的收敛定理,即二阶模糊随机过程序列关于增实函数收敛定理(ρ)lim n→∞ integral from n=a to b(Xn(t)dg(t))=inte...利用二阶模糊随机过程均方Henstock-Stieltjes积分的定义和性质,讨论了两类二阶模糊随机过程均方Henstock-Stieltjes积分的收敛定理,即二阶模糊随机过程序列关于增实函数收敛定理(ρ)lim n→∞ integral from n=a to b(Xn(t)dg(t))=integral from n=a to b(X(t)dg(t))和均方连续二阶模糊随机过程关于实值单调非减函数列收敛定理(ρ)lim n→∞ integral from n=a to b(X(t)dg(t))=integral from n=a to b(X(t)dg(t)).展开更多
In this paper we introduce the notion of the Henstock-Stieltjes (HS) integrals of interval-valued functions and fuzzy-number-valued functions and discuss some of their properties.
文摘利用二阶模糊随机过程均方Henstock-Stieltjes积分的定义和性质,讨论了两类二阶模糊随机过程均方Henstock-Stieltjes积分的收敛定理,即二阶模糊随机过程序列关于增实函数收敛定理(ρ)lim n→∞ integral from n=a to b(Xn(t)dg(t))=integral from n=a to b(X(t)dg(t))和均方连续二阶模糊随机过程关于实值单调非减函数列收敛定理(ρ)lim n→∞ integral from n=a to b(X(t)dg(t))=integral from n=a to b(X(t)dg(t)).
文摘In this paper we introduce the notion of the Henstock-Stieltjes (HS) integrals of interval-valued functions and fuzzy-number-valued functions and discuss some of their properties.