Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinat...Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinations is more significant than a specific food component.This study investigated the lipid-lowering effect of highland barley polyphenols via lipase assay in vitro and HepG2 cells induced by oleic acid(OA).Five indexes,triglyceride(TG),total cholesterol(T-CHO),low density lipoprotein-cholesterol(LDL-C),aspartate aminotransferase(AST),and alanine aminotransferase(ALT),were used to evaluate the lipidlowering effect of highland barley extract.We also preliminary studied the lipid-lowering mechanism by Realtime fluorescent quantitative polymerase chain reaction(q PCR).The results indicated that highland barley extract contains many components with lipid-lowering effects,such as hyperoside and scoparone.In vitro,the lipase assay showed an 18.4%lipase inhibition rate when the additive contents of highland barley extract were 100μg/m L.The intracellular lipid-lowering effect of highland barley extract was examined using 0.25 mmol/L OA-induced HepG2 cells.The results showed that intracellular TG,LDL-C,and T-CHO content decreased by 34.4%,51.2%,and 18.4%,respectively.ALT and AST decreased by 51.6%and 20.7%compared with the untreated hyperlipidemic HepG2 cells.q PCR results showed that highland barley polyphenols could up-regulation the expression of lipid metabolism-related genes such as PPARγand Fabp4.展开更多
Hyperoside and quercetin are similar in molecular structures.In this study,the antioxidant regulatory targets of hyperoside and quercetin are mainly in the nuclear factor(erythroid-2-derived)-related factor 2(Nrf2)pat...Hyperoside and quercetin are similar in molecular structures.In this study,the antioxidant regulatory targets of hyperoside and quercetin are mainly in the nuclear factor(erythroid-2-derived)-related factor 2(Nrf2)pathway predicted by network pharmacology.And the antioxidant effect and mechanism of hyperoside and quercetin were measured and compared in H_(2)O_(2)-induced Hep G2 cells and Caenorhabditis elegans.The findings indicated that quercetin was more effective than hyperoside in reducing oxidative damage,which was proved by improved cell viability,decreased reactive oxygen species(ROS)production,decreased cellular apoptosis,and alleviated mitochondrial damage.In addition,quercetin was more efficient than hyperoside in enhancing the expression of Nrf2-associated m RNAs,increasing the activities of superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),and catalase(CAT),and reducing the cellular malondialdehyde(MDA)content.Quercetin was superior to hyperoside in prolonging the lifespan of worms,decreasing the accumulation of lipofuscin,inhibiting ROS production,and increasing the proportion of skn-1 in the nucleus.With the Nrf2 inhibitor ML385,we verified that quercetin and hyperoside primarily protected the cells against oxidative damage via the Nrf2 signalling pathway.Furthermore,molecular docking and dynamics simulations demonstrated that the quercetin-Kelch-like ECH-associated protein 1(Keap1)complex was more stable than the hyperoside-Keap1 complex.The stable structure of the complex might hinder the binding of Nrf2 and Keap1 to release Nrf2 and facilitate its entry into the nucleus to play an antioxidant role.Overall,quercetin had a better antioxidant than hyperoside.展开更多
Potentilla anserina L.(PA)belongs to the Rosaceae family,is a common edible plant in the Qinghai-Tibet Plateau areas of China.This study elucidates the mechanism upon which crude polysaccharide of PA(PAP)on fat accumu...Potentilla anserina L.(PA)belongs to the Rosaceae family,is a common edible plant in the Qinghai-Tibet Plateau areas of China.This study elucidates the mechanism upon which crude polysaccharide of PA(PAP)on fat accumulation in HepG2 cells stimulated by oleic acid(OA)and high fat high sugar induced mice.The result revealed that PAP inhibited lipid accumulation in obese mice and ameliorated the degree of damage in OA-induced HepG2 cells.Specifically,compared to the control group,the TG and TC levels were decreased in cells and mice serum,the aspartate transaminase and alamine aminotransferase contents were declined in liver of obese mice by PAP treatment.The expressions of adipogenic genes of SREBP-1c,C/EBPα,PPARγ,and FAS were inhibited after PAP treatment.Moreover,PAP increased the mRNA levels of CPT-1 and PPARα,which were involved in fatty acid oxidation.The present results indicated the PAP could alleviate the damage of liver associated with obesity and PAP treatment might provide a dietary therapeutic option for the treatment of hyperlipidemia.展开更多
Naringin exists in a wide range of Chinese herbal medicine and has proven to possess several pharmacological properties.In this study,PC12,HepG2 cells,and female Drosophila melanogaster were used to investigate the an...Naringin exists in a wide range of Chinese herbal medicine and has proven to possess several pharmacological properties.In this study,PC12,HepG2 cells,and female Drosophila melanogaster were used to investigate the antioxidative and anti-aging effects of naringin and explore the underlying mechanisms.The results showed that naringin inhibited H_(2)O_(2)-induced decline in cell viability and decreased,the content of reactive oxygen species in cells.Meanwhile,naringin prolonged the lifespan of flies,enhanced the abilities of climbing and the resistance to stress,improved the activities of antioxidant enzymes,and decreased malondialdehyde content.Naringin also improved intestinal barrier dysfunction and reduced abnormal proliferation of intestinal stem cells.Moreover,naringin down-regulated the mRNA expressions of inr,chico,pi 3k,and akt-1,and up-regulated the mRNA expressions of dilp2,dilp3,dilp5,and foxo,thereby activating autophagy-related genes and increasing the number of lysosomes.Furthermore,the mutant stocks assays and computer molecular simulation results further indicated that naringin delayed aging by inhibiting the insulin signaling(IIS)pathway and activating the autophagy pathway,which was consistent with the result of network pharmacological predictions.展开更多
To explore the function of licochalcone A as an anticancer phytochemical on HepG2 cells and investigate its potential mechanisms,we analyzed the microRNAs(miRNAs)expression profile of HepG2 cells in response to licoch...To explore the function of licochalcone A as an anticancer phytochemical on HepG2 cells and investigate its potential mechanisms,we analyzed the microRNAs(miRNAs)expression profile of HepG2 cells in response to licochalcone A(70μmol/L)in vitro.102 dysregulated miRNAs were detected,and SP1 was expected as the transcription factor that regulates the functions of most screened miRNAs.A sum of 431 targets,the overlap of predicted mRNAs from TargetScan,miRDB,and miRtarbase were detected as the targets for these dysregulated miRNAs.FoxO signaling pathway was the hub pathway for the targets.A protein-protein interaction network was structured on the STRING platform to discover the hub genes.Among them,PIK3R1,CDC42,ESR1,SMAD4,SUMO1,KRAS,AGO1,etc.were screened out.Afterwards,the miRNA-target networks were established to screen key dysregulated miRNAs.Two key miRNAs(hsa-miR-133b and hsa-miR-145-5p)were filtered.Finally,the miRNA-target-transcription factor networks were constructed for these key miRNAs.The networks for these key miRNAs included three and two transcription factors,respectively.These identified miRNAs,transcription factors,targets,and regulatory networks may offer hints to understand the molecular mechanism of licochalcone A as a natural anticarcinogen.展开更多
Alcohol abuse has recently become a serious health concern worldwide,and the incidence of alcoholic liver disease(ALD)is rapidly increasing with high morbidity and mortality.Ferroptosis is a newly recognized form of r...Alcohol abuse has recently become a serious health concern worldwide,and the incidence of alcoholic liver disease(ALD)is rapidly increasing with high morbidity and mortality.Ferroptosis is a newly recognized form of regulated cell death caused by the iron-dependent accumulation of lipid peroxidation.Here we showed that the circadian clock protein brain and muscle arnt-like protein-1(BMAL1)in hepatocytes is both necessary and sufficient to protect against ALD by mitigating ferroptosis.U pon exposure to alcohol(5%Lieber-DeCarli liquid alcohol diet for 10 days before binged alcohol with 5 g/kg body weight in vivo,300 mmol/L for 12 h in vitro,respectively),the content of iron,reactive oxygen species(ROS)and malondialdehyde(MDA)was boosted signifi cantly while glutathione(GSH)was decreased that mainly based on the downregulated protein expression of ferritin heavy chain(FTH),ferroportin(FPN),heme oxygenase1(HO-1)and anti-cystine/glutamate antiporter(SLC7A11),while these changes could be abolished by ferroptosis inhibitor Ferrostatin-1[Fer-1(5 mg/kg body weight for 10 days in vivo,10μmol/L for 2 h in vitro,respectively)].Further study indicated that the alcohol could activate the protein expression of BMAL1 which exerts a protective effect against ferroptosis through promoting nuclear factor erythroid 2-related factor 2(Nrf2)translocation into nuclear and subsequently stimulating its downstream proteins FTH,FPN,glutathione peroxidase 4 activity(GPX4),HO-1,SLC7A11,while knockdown of BMAL1 and Nrf2 by RNA interference further downregulated the expression of these protein and thus promoting ferroptosis in response to alcohol.Collectively,our results unveiled that the protective action of BMAL1 during alcohol challenge depends on its ability to activate Nrf2-ARE antiferroptosis pathway and targeting hepatic BMAL1 to dampen hepatic ferroptosis signaling may have therapeutic potential for ALD.展开更多
Dietary flavonoids are abundant in natural plants and possess multiple pharmacological and nutritional activities.In this study,apigenin,luteolin,and baicalein were chosen to evaluate their anti-diabetic effect in hig...Dietary flavonoids are abundant in natural plants and possess multiple pharmacological and nutritional activities.In this study,apigenin,luteolin,and baicalein were chosen to evaluate their anti-diabetic effect in high-glucose and dexamethasone induced insulin-resistant(IR)HepG2 cells.All flavonoids improves the glucose consumption and glycogen synthesis abilities in IR-HepG2 cells via activating glucose transporter protein 4(GLUT4)and phosphor-glycogen synthase kinase(GSK-3β).These fl avonoids signifi cantly inhibited the production of reactive oxygen species(ROS)and advanced glycation end-products(AGEs),which were closely related to the suppression of the phosphorylation form of NF-κB and P65.The expression levels of insulin receptor substrate-1(IRS-1),insulin receptor substrate-2(IRS-2)and phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)pathway in IR-HepG2 cells were all partially activated by the fl avonoids,with variable effects.Furthermore,the intracellular metabolic conditions of the fl avonoids were also evaluated.展开更多
BACKGROUND:Many Chinese herbs,especially herbal injections,have been shown to have anti-tumor effects in recent years.However,since most reports focus on the clinical effectiveness of these herbs,their mechanisms of a...BACKGROUND:Many Chinese herbs,especially herbal injections,have been shown to have anti-tumor effects in recent years.However,since most reports focus on the clinical effectiveness of these herbs,their mechanisms of action are not well understood.In this study,we assessed apoptosis in the hepatocellular carcinoma (HCC) cell line HepG2 induced by an injectable extract from the seed of Coix lacryma-jobi (Semen coicis,SC),and monitored the expression of Bcl-2 and caspase-8.METHODS:Injectable SC was applied to HepG2 cells at different concentrations and the cells were collected 12,24 and 48 hours later.5-fluorouracil was used as a positive control group,and fluorescence-activated cell-sorting cytometry was used to measure the apoptosis rate of HepG2 cells and the expression of Bcl-2 and caspase-8 proteins.RESULTS:SC induced apoptosis in HepG2 cells in a concentration and time-dependent manner,and the expression of caspase-8 was elevated and prolonged.However,it did not significantly influence the expression of Bcl-2.CONCLUSION:Injectable SC may induce apoptosis in HCC cells by regulating the expression of caspase-8.展开更多
AIM: To investigate the possible mechanism by which hepatitis B virus X protein (HBx) mediates apoptosis of HepG2 cells. METHODS: HBx expression vector pcDNA3.1-X was transfected into HepG2 cells to establish an H...AIM: To investigate the possible mechanism by which hepatitis B virus X protein (HBx) mediates apoptosis of HepG2 cells. METHODS: HBx expression vector pcDNA3.1-X was transfected into HepG2 cells to establish an HBx high- expression cellular model as pcDNA3.1-X transfected group. The pcDNA3.1-X and pSilencer3.1-shHBX (HBx antagonist) were cotransfected into HepG2 cells to es- tablish an HBx low-expression model as RNAi group. Untransfected HepG2 cells and HepG2 cells transfected with negative control plasmid were used as controls. Apoptosis rate, the expression of Fas/FasL signaling pathway-related proteins and the phosphorylation lev- els of MLK3, MKK7 and JNKs, which are upstream molecules of death receptor pathways and belong to the family of mitogen-activated protein kinases (MAPKs),were measured in each group RESULTS: Compared with HepG2 cell group and RNAi group, apoptosis rate, the expression of Fas and FasL proteins, and the activation of MLK3, MKK7 and 3NKs were increased in the pcDNA3.1-X transfected group. The activation of JNKs and expression of FasL protein were inhibited in the pcDNA3.1-X transfected group when treated with a known JNK inhibitor, SP600125. When authors treated pcDNA3.1-X transfected group with K252a, a known MLK3 inhibitor, the activation of MLK3, MKK7 and 3NKs as well as expression of FasL protein was inhibited. Furthermore, cell apoptosis rate was also significantly declined in the presence of K252a in the pcDNA3.1-X transfected group. CONCLUSION: HBx can induce HepG2 cell apoptosis via a novel active MLK3-MKK7-JNKs signaling module to upregulate FasL protein expression.展开更多
AIM: To investigate the role of Beclin 1 on the susceptibility of HepG2 cells to undergo apoptosis after anti-Fas antibody or doxorubicin treatment. METHODS: Beclin 1 silencing was achieved using RNA interference. D...AIM: To investigate the role of Beclin 1 on the susceptibility of HepG2 cells to undergo apoptosis after anti-Fas antibody or doxorubicin treatment. METHODS: Beclin 1 silencing was achieved using RNA interference. DNA ploidy, the percentage of apoptotic cells and the mitochondrial membrane potential were assessed by flow cytometry. Levels of Beclin 1, BCI-XL and cytochrome c, and the cleavage of poly (ADP-ribose) polymerase (PARP) were assayed by using Western blots. RESULTS: Beclin 1 expression decreased by 75% 72 h after Beclin 1 siRNA transfection. Partial Beclin 1 silencing significantly increased the percentage of subG1 cells 24 and 40 h after treatment with doxorubicin or anti-Fas antibody, respectively, and this potentiation was abrogated by treatment with a pan-caspase inhibitor. Partial Beclin 1 silencing also increased PARP cleavage, mitochondrial membrane depolarization and cytosolic cytochrome c. The pro-apoptotic consequences of partial Beclin 1 silencing were not associated with a decline in Bcl-XL expression.CONCLUSION: Partial Beclin 1 silencing aggravates mitochondrial permeabilization and apoptosis in HepG2 cells treated with an anti-Fas antibody or with doxorubicin.展开更多
AIM: To investigate the signaling pathways implicated in phosphatidylethanolamine (PE)-induced apoptosis of human hepatoma HepG2 cells. METHODS: Inhibitory effects of PE on human hepatoma HepG2 cells were detected by ...AIM: To investigate the signaling pathways implicated in phosphatidylethanolamine (PE)-induced apoptosis of human hepatoma HepG2 cells. METHODS: Inhibitory effects of PE on human hepatoma HepG2 cells were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell cycle, apoptosis and mitochondrial transmembrane potential (ΔΨm) were analyzed by flow cytometry. Immunocytochemical assay and Western blotting were used to examine Bcl-2, Bax and caspase-3 protein levels in HepG2 cells treated with PE. RESULTS: PE inhibited the growth of HepG2 cells in a doseand timedependent manner. It did notaffect the cell cycle, but induced apoptosis. PE significantly decreased ΔΨm at 0.25, 0.5 and 1 mmol/L, respectively, suggesting that PE induces cell apoptosis by decreasing the mitochondrial transmembrane potential. The Bcl-2 expression level induced by different concentrations of PE was lower than that in control groups. However, the Bax expression level induced by PE was higher than that in the control group. Meanwhile, PE increased the caspase-3 expression in a doseand time-dependent manner. CONCLUSION: Exogenous PE induces apoptosis of human hepatoma HepG2 cells via the bcl-2/bax pathway.展开更多
AIM: To investigate the effect of GW4064 on the expression of adipokines and their receptors during differentiation of 3T3-L1 preadipocytes and in HepG2 cells.
AIM: To clarify the mechanism underlying the anti-mutagenic and anti-cancer activities of Scorpio water extract (SWE). METHODS: Human hepatoma HepG2 cells were incubated with various concentrations of SWE. After 24-h ...AIM: To clarify the mechanism underlying the anti-mutagenic and anti-cancer activities of Scorpio water extract (SWE). METHODS: Human hepatoma HepG2 cells were incubated with various concentrations of SWE. After 24-h incubation, cytotoxicity and apoptosis evaluations were determined by MTT and DNA fragmentation assay, respectively. After treatment with SWE, mitochondrial membrane potential (MMP) was determined by measuring the retention of the dye 3,3'-dihexyloxacarbocyanine (DiOC6(3)) and the protein expression including cytochrome C and poly-(ADPribose) polymerase (PARP) were measured by Western blotting. Caspase-3 and -9 enzyme activities were measured using specific fluorescence dyes such as Ac-DEVD-AFC and Ac-LEHD-AFC. RESULTS: We found that treatment with SWE induced apoptosis as confirmed by discontinuous DNA fragmentation in cultured human hepatoma HepG2 cells. Our investigation also showed that SWE-induced apoptosis of HepG2 cells were associated with intracellular events including disruption of MMP, increased translocation of cytochrome C from mitochondria to cytosol, activation of caspase-3, and PARP. Pre-treatment of N-acetyl-Asp-Glu-Val-Asp-CHO (Ac-DEVD-CHO), a caspase-3 specific inhibitor, or cyclosporin A (CsA), an inhibitor of MMP disruption, completely abolished SWE-induced DNA fragmentation. CONCLUSION: These results suggest that SWE possibly causes mitochondrial damage, leading to cytochrome C release into cytosol and activation of caspases resulting in PARP cleavage and execution of apoptotic cell death in HepG2 cells. These results further suggest that Scorpio may be a valuable agent of therapeutic intervention of human hepatomas.展开更多
BACKGROUND: Enzymes involved in drug and xenobiotic metabolism have been considered to exist in two groups: phase I and phase II enzymes. Cytochrome P450 isoenzymes (CYPs) are the most important phase I enzymes in the...BACKGROUND: Enzymes involved in drug and xenobiotic metabolism have been considered to exist in two groups: phase I and phase II enzymes. Cytochrome P450 isoenzymes (CYPs) are the most important phase I enzymes in the metabolism of xenobiotics. The products of phase I metabolism are then acted upon by phase II enzymes, including glutathione S-transferases (GSTs). Herbs that inhibit CYPs such as CYP3A4 or that induce GSTs may have the potential to protect against chemical carcinogenesis since the mutagenic effects of carcinogens are often mediated through an excess of CYP-generated reactive intermediates. This study was designed to investigate the effects of salvianolic acid B (Sal B), a pure compound extracted from Radix Salviae Miltiorrhizae, a Chinese herb, on cell proliferation and CYP1A2 and CYP3A4 mRNA expression in the presence or absence of rifampicin, a potent inducer of CYPs and GST protein expression in HepG2 cells. METHODS: HepG2 cells were incubated with different concentrations of Sal B. Cell proliferation was determined by SYTOX-Green nucleic acid staining. CYP3A4 and CYP1A2 mRNA expression was assayed by real-time PCR. GST protein expression was analyzed by Western blotting. RESULTS: Low concentrations of Sal B (0-20 μmol/L) had no significant effects on cell proliferation, while higher concentrations (100-250 μmol/L) significantly inhibited proliferation in a concentration-dependent manner. Ten μmol/L Sal B, but not 1 μmol/L, down-regulated CYP3A4 and CYP1A2 mRNA expression after 24 hours of incubation, whereas both 1 and 10 μmol/L Sal B down-regulated CYP3A4mRNA expression after 96 hours of incubation; moreover, 1 and 10 μmol/L Sal B inhibited CYP3A4 mRNA expression induced by rifampicin. Both 1 μmol/L and 10 μmol/L Sal B increased GST expression. CONCLUSION: Sal B inhibits CYP3A4 and CYP1A2 mRNA expression and induces GST expression in HepG2 cells.展开更多
The anticancer activity of stevenleaf(SV)on the basis of cell viability,cell cycle,and apoptosis induction in HepG2 cancer cells were evaluated.SV controlled the growth of HepG2 cells with IC50 of 139.82μmol/L for 24...The anticancer activity of stevenleaf(SV)on the basis of cell viability,cell cycle,and apoptosis induction in HepG2 cancer cells were evaluated.SV controlled the growth of HepG2 cells with IC50 of 139.82μmol/L for 24 h,IC50 of 119.12μmol/L for 48 h and cell cycle arrested at G0/G1 phase,induced cell apoptosis and enhanced intracellular ROS generation.For cell cycle arrest,the mRNA expression levels of p21,p27 and p53 were up-regulated,while the expression levels of Cyclin A,Cyclin D1,Cyclin E and CDK1/2 were downregulated.SV efficiently up-regulated TNF R1,TRADD1 and FADD and down-regulated Caspase8 for cell death receptors;similarly,up-regulated Bax,Bak,Cytc,Apaf1,Caspase3 and Caspase9,and down-regulated Bcl2,Bcl xl and Bad for mitochondrial signal pathway.SV induced the mTOR-mediated cell apoptosis in HepG2 cells via activation of Akt and AMPK.The mechanistic explanation for the anticancer activity of SV as functional food can be derived from above results.展开更多
Medicinal plants have a long history of use in China to treat diabetic symptoms.Ancient Chinese medical manuscripts and ethnobotanical surveys document plant remedies that continue to be actively used in China for the...Medicinal plants have a long history of use in China to treat diabetic symptoms.Ancient Chinese medical manuscripts and ethnobotanical surveys document plant remedies that continue to be actively used in China for the treatment of diabetic symptoms.Based on a systematic ancient Chinese medical manuscripts review in combination with ethnobotanical survey,16 medicinal plants for the traditional treatment of diabetic symptoms were identified for the evaluation of anti-insulin resistance bioactivity.The biological activity of 16 medicinal plants was tested on dexamethasone(DXMS)-induced insulin resistant HepG2 cells.The result shows that 11 of the 16 medicinal plants enhanced glucose uptake of DXMS-induced insulin resistant HepG2 cells,thereby demonstrating their ability to increase insulin sensitivity,other five medicinal plants including Astragalus membranaceus were found ineffective.The study shows that ancient Chinese medical manuscripts and ethnobotanical surveys on plants for the prevention and treatment of diabetic symptoms provide a promising knowledge base for drug discovery to mitigate the global diabetes epidemic.展开更多
Antioxidant peptides have been widely reported.However,only a few reports have been published examining the antioxidant peptides derived from Chinese baijiu.In this study,6 novel peptides derived from Chinese baijiu w...Antioxidant peptides have been widely reported.However,only a few reports have been published examining the antioxidant peptides derived from Chinese baijiu.In this study,6 novel peptides derived from Chinese baijiu were identified successfully using high-performance liquid chromatography-quadrupoletime-of-flight mass spectrometry(HPLC-QTOF-MS)with a concentration of 0.835–24.540μg/L.The underlying molecular mechanisms were investigated,and their cytoprotective effects were examined against 2,2’-azobis(2-methylpropanimidamidine)dihydrochloride(AAPH)-induced oxidative stress in Hep G2 cells.The results showed that these peptides exerted protective effects by suppressing reactive oxygen species(ROS)generation,preventing malondialdehyde(MDA)formation,and upregulating cellular antioxidant enzyme activities(SOD,CAT,and GSH-Px)in a dose-dependent manner.Further experiments proved that these peptides exerted antioxidant effects via Nrf2/ARE-mediated signaling pathway by promoting Nrf2 nuclear translocation,inhibiting ubiquitination,and enhancing transcription capacity of Nrf2 in Hep G2 cells.These findings provide the molecular basis for the effects of antioxidant peptides derived from Chinese baijiu,which is important for a deeper understanding of the relationship between human health and moderate drinking.展开更多
基金financially supported by the National Key Research and Development Program of China(2021YFD2100904)the National Natural Science Foundation of China(31871729,32172147)+2 种基金the Modern Agriculture key Project of Jiangsu Province of China(BE2022317)the Modern Agricultural Industrial Technology System Construction Project of Jiangsu Province of China(JATS[2021]522)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Active ingredients from highland barley have received considerable attention as natural products for developing treatments and dietary supplements against obesity.In practical application,the research of food combinations is more significant than a specific food component.This study investigated the lipid-lowering effect of highland barley polyphenols via lipase assay in vitro and HepG2 cells induced by oleic acid(OA).Five indexes,triglyceride(TG),total cholesterol(T-CHO),low density lipoprotein-cholesterol(LDL-C),aspartate aminotransferase(AST),and alanine aminotransferase(ALT),were used to evaluate the lipidlowering effect of highland barley extract.We also preliminary studied the lipid-lowering mechanism by Realtime fluorescent quantitative polymerase chain reaction(q PCR).The results indicated that highland barley extract contains many components with lipid-lowering effects,such as hyperoside and scoparone.In vitro,the lipase assay showed an 18.4%lipase inhibition rate when the additive contents of highland barley extract were 100μg/m L.The intracellular lipid-lowering effect of highland barley extract was examined using 0.25 mmol/L OA-induced HepG2 cells.The results showed that intracellular TG,LDL-C,and T-CHO content decreased by 34.4%,51.2%,and 18.4%,respectively.ALT and AST decreased by 51.6%and 20.7%compared with the untreated hyperlipidemic HepG2 cells.q PCR results showed that highland barley polyphenols could up-regulation the expression of lipid metabolism-related genes such as PPARγand Fabp4.
基金supported by the Open Project Program of the State Key Laboratory of Food Nutrition and Safety,Tianjin University of Science and Technology(No.SKLFNS-KF-202201)the Open Project of the Key Laboratory of Environmental Pollution Monitoring and Disease Control,Ministry of Education,Guizhou Medical University,China(No.GMU-2022-HJZ-06)。
文摘Hyperoside and quercetin are similar in molecular structures.In this study,the antioxidant regulatory targets of hyperoside and quercetin are mainly in the nuclear factor(erythroid-2-derived)-related factor 2(Nrf2)pathway predicted by network pharmacology.And the antioxidant effect and mechanism of hyperoside and quercetin were measured and compared in H_(2)O_(2)-induced Hep G2 cells and Caenorhabditis elegans.The findings indicated that quercetin was more effective than hyperoside in reducing oxidative damage,which was proved by improved cell viability,decreased reactive oxygen species(ROS)production,decreased cellular apoptosis,and alleviated mitochondrial damage.In addition,quercetin was more efficient than hyperoside in enhancing the expression of Nrf2-associated m RNAs,increasing the activities of superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),and catalase(CAT),and reducing the cellular malondialdehyde(MDA)content.Quercetin was superior to hyperoside in prolonging the lifespan of worms,decreasing the accumulation of lipofuscin,inhibiting ROS production,and increasing the proportion of skn-1 in the nucleus.With the Nrf2 inhibitor ML385,we verified that quercetin and hyperoside primarily protected the cells against oxidative damage via the Nrf2 signalling pathway.Furthermore,molecular docking and dynamics simulations demonstrated that the quercetin-Kelch-like ECH-associated protein 1(Keap1)complex was more stable than the hyperoside-Keap1 complex.The stable structure of the complex might hinder the binding of Nrf2 and Keap1 to release Nrf2 and facilitate its entry into the nucleus to play an antioxidant role.Overall,quercetin had a better antioxidant than hyperoside.
基金supported by the Natural Science Foundation of Tibet Autonomous Region(XZ202201ZR0012G)Quality Evaluation and Efficient Utilization of Effective Components of Potentilla anserine Resources in Tibet(XZ202201ZD0001N).
文摘Potentilla anserina L.(PA)belongs to the Rosaceae family,is a common edible plant in the Qinghai-Tibet Plateau areas of China.This study elucidates the mechanism upon which crude polysaccharide of PA(PAP)on fat accumulation in HepG2 cells stimulated by oleic acid(OA)and high fat high sugar induced mice.The result revealed that PAP inhibited lipid accumulation in obese mice and ameliorated the degree of damage in OA-induced HepG2 cells.Specifically,compared to the control group,the TG and TC levels were decreased in cells and mice serum,the aspartate transaminase and alamine aminotransferase contents were declined in liver of obese mice by PAP treatment.The expressions of adipogenic genes of SREBP-1c,C/EBPα,PPARγ,and FAS were inhibited after PAP treatment.Moreover,PAP increased the mRNA levels of CPT-1 and PPARα,which were involved in fatty acid oxidation.The present results indicated the PAP could alleviate the damage of liver associated with obesity and PAP treatment might provide a dietary therapeutic option for the treatment of hyperlipidemia.
基金supported by the open project of the Key Laboratory of Environmental Pollution Monitoring and Disease Control,Ministry of Education,Guizhou Medical University,China (GMU-2022-HJZ-06)。
文摘Naringin exists in a wide range of Chinese herbal medicine and has proven to possess several pharmacological properties.In this study,PC12,HepG2 cells,and female Drosophila melanogaster were used to investigate the antioxidative and anti-aging effects of naringin and explore the underlying mechanisms.The results showed that naringin inhibited H_(2)O_(2)-induced decline in cell viability and decreased,the content of reactive oxygen species in cells.Meanwhile,naringin prolonged the lifespan of flies,enhanced the abilities of climbing and the resistance to stress,improved the activities of antioxidant enzymes,and decreased malondialdehyde content.Naringin also improved intestinal barrier dysfunction and reduced abnormal proliferation of intestinal stem cells.Moreover,naringin down-regulated the mRNA expressions of inr,chico,pi 3k,and akt-1,and up-regulated the mRNA expressions of dilp2,dilp3,dilp5,and foxo,thereby activating autophagy-related genes and increasing the number of lysosomes.Furthermore,the mutant stocks assays and computer molecular simulation results further indicated that naringin delayed aging by inhibiting the insulin signaling(IIS)pathway and activating the autophagy pathway,which was consistent with the result of network pharmacological predictions.
基金supported by the Hefei University Scientific Research and Development Fund(20ZR09ZDB)the talent fund of Hefei University(20RC48)+2 种基金the University Natural Sciences Research Project of Anhui Province(KJ2021A1009)the Major Projects of Science and Technology in Anhui Province(201903a06020021,202004a06020042,202004a06020052,201904a06020008)the National Natural Science Foundation of China(31850410476).
文摘To explore the function of licochalcone A as an anticancer phytochemical on HepG2 cells and investigate its potential mechanisms,we analyzed the microRNAs(miRNAs)expression profile of HepG2 cells in response to licochalcone A(70μmol/L)in vitro.102 dysregulated miRNAs were detected,and SP1 was expected as the transcription factor that regulates the functions of most screened miRNAs.A sum of 431 targets,the overlap of predicted mRNAs from TargetScan,miRDB,and miRtarbase were detected as the targets for these dysregulated miRNAs.FoxO signaling pathway was the hub pathway for the targets.A protein-protein interaction network was structured on the STRING platform to discover the hub genes.Among them,PIK3R1,CDC42,ESR1,SMAD4,SUMO1,KRAS,AGO1,etc.were screened out.Afterwards,the miRNA-target networks were established to screen key dysregulated miRNAs.Two key miRNAs(hsa-miR-133b and hsa-miR-145-5p)were filtered.Finally,the miRNA-target-transcription factor networks were constructed for these key miRNAs.The networks for these key miRNAs included three and two transcription factors,respectively.These identified miRNAs,transcription factors,targets,and regulatory networks may offer hints to understand the molecular mechanism of licochalcone A as a natural anticarcinogen.
文摘Alcohol abuse has recently become a serious health concern worldwide,and the incidence of alcoholic liver disease(ALD)is rapidly increasing with high morbidity and mortality.Ferroptosis is a newly recognized form of regulated cell death caused by the iron-dependent accumulation of lipid peroxidation.Here we showed that the circadian clock protein brain and muscle arnt-like protein-1(BMAL1)in hepatocytes is both necessary and sufficient to protect against ALD by mitigating ferroptosis.U pon exposure to alcohol(5%Lieber-DeCarli liquid alcohol diet for 10 days before binged alcohol with 5 g/kg body weight in vivo,300 mmol/L for 12 h in vitro,respectively),the content of iron,reactive oxygen species(ROS)and malondialdehyde(MDA)was boosted signifi cantly while glutathione(GSH)was decreased that mainly based on the downregulated protein expression of ferritin heavy chain(FTH),ferroportin(FPN),heme oxygenase1(HO-1)and anti-cystine/glutamate antiporter(SLC7A11),while these changes could be abolished by ferroptosis inhibitor Ferrostatin-1[Fer-1(5 mg/kg body weight for 10 days in vivo,10μmol/L for 2 h in vitro,respectively)].Further study indicated that the alcohol could activate the protein expression of BMAL1 which exerts a protective effect against ferroptosis through promoting nuclear factor erythroid 2-related factor 2(Nrf2)translocation into nuclear and subsequently stimulating its downstream proteins FTH,FPN,glutathione peroxidase 4 activity(GPX4),HO-1,SLC7A11,while knockdown of BMAL1 and Nrf2 by RNA interference further downregulated the expression of these protein and thus promoting ferroptosis in response to alcohol.Collectively,our results unveiled that the protective action of BMAL1 during alcohol challenge depends on its ability to activate Nrf2-ARE antiferroptosis pathway and targeting hepatic BMAL1 to dampen hepatic ferroptosis signaling may have therapeutic potential for ALD.
基金supported by National Natural Science Foundation of China(32072212)Multi-Year Research Grant of University of Macao(MYRG2018-00169-ICMS)+5 种基金Science and Technology Development Fund of Macao(FDCT)(0098/2020/A)MICINN supporting the Ramón y Cajal grant for M.A.Prieto(RYC-201722891)Jianbo Xiao(RYC2020-030365-I)Xunta de Galicia supporting the Axudas Conecta Peme,the IN852A 2018/58 Neuro Food Project,the program EXCELENCIA-ED431F 2020/12the pre-doctoral grants of P.García-Oliveira(ED481A-2019/295)to Ibero-American Program on Science and Technology(CYTED-AQUA-CIBUS,P317RT0003).
文摘Dietary flavonoids are abundant in natural plants and possess multiple pharmacological and nutritional activities.In this study,apigenin,luteolin,and baicalein were chosen to evaluate their anti-diabetic effect in high-glucose and dexamethasone induced insulin-resistant(IR)HepG2 cells.All flavonoids improves the glucose consumption and glycogen synthesis abilities in IR-HepG2 cells via activating glucose transporter protein 4(GLUT4)and phosphor-glycogen synthase kinase(GSK-3β).These fl avonoids signifi cantly inhibited the production of reactive oxygen species(ROS)and advanced glycation end-products(AGEs),which were closely related to the suppression of the phosphorylation form of NF-κB and P65.The expression levels of insulin receptor substrate-1(IRS-1),insulin receptor substrate-2(IRS-2)and phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)pathway in IR-HepG2 cells were all partially activated by the fl avonoids,with variable effects.Furthermore,the intracellular metabolic conditions of the fl avonoids were also evaluated.
基金supported by a grant from the Foundation of Most Advanced Group of Medical Scientists and Technicians of Shandong Province (2007GG30002014)
文摘BACKGROUND:Many Chinese herbs,especially herbal injections,have been shown to have anti-tumor effects in recent years.However,since most reports focus on the clinical effectiveness of these herbs,their mechanisms of action are not well understood.In this study,we assessed apoptosis in the hepatocellular carcinoma (HCC) cell line HepG2 induced by an injectable extract from the seed of Coix lacryma-jobi (Semen coicis,SC),and monitored the expression of Bcl-2 and caspase-8.METHODS:Injectable SC was applied to HepG2 cells at different concentrations and the cells were collected 12,24 and 48 hours later.5-fluorouracil was used as a positive control group,and fluorescence-activated cell-sorting cytometry was used to measure the apoptosis rate of HepG2 cells and the expression of Bcl-2 and caspase-8 proteins.RESULTS:SC induced apoptosis in HepG2 cells in a concentration and time-dependent manner,and the expression of caspase-8 was elevated and prolonged.However,it did not significantly influence the expression of Bcl-2.CONCLUSION:Injectable SC may induce apoptosis in HCC cells by regulating the expression of caspase-8.
基金Supported by Natural Science Foundation of Jiangsu Province,No.10KJD310002The Graduate Innovation Program in Science and Technology of Xuzhou Medical College,No.XYCX201005
文摘AIM: To investigate the possible mechanism by which hepatitis B virus X protein (HBx) mediates apoptosis of HepG2 cells. METHODS: HBx expression vector pcDNA3.1-X was transfected into HepG2 cells to establish an HBx high- expression cellular model as pcDNA3.1-X transfected group. The pcDNA3.1-X and pSilencer3.1-shHBX (HBx antagonist) were cotransfected into HepG2 cells to es- tablish an HBx low-expression model as RNAi group. Untransfected HepG2 cells and HepG2 cells transfected with negative control plasmid were used as controls. Apoptosis rate, the expression of Fas/FasL signaling pathway-related proteins and the phosphorylation lev- els of MLK3, MKK7 and JNKs, which are upstream molecules of death receptor pathways and belong to the family of mitogen-activated protein kinases (MAPKs),were measured in each group RESULTS: Compared with HepG2 cell group and RNAi group, apoptosis rate, the expression of Fas and FasL proteins, and the activation of MLK3, MKK7 and 3NKs were increased in the pcDNA3.1-X transfected group. The activation of JNKs and expression of FasL protein were inhibited in the pcDNA3.1-X transfected group when treated with a known JNK inhibitor, SP600125. When authors treated pcDNA3.1-X transfected group with K252a, a known MLK3 inhibitor, the activation of MLK3, MKK7 and 3NKs as well as expression of FasL protein was inhibited. Furthermore, cell apoptosis rate was also significantly declined in the presence of K252a in the pcDNA3.1-X transfected group. CONCLUSION: HBx can induce HepG2 cell apoptosis via a novel active MLK3-MKK7-JNKs signaling module to upregulate FasL protein expression.
文摘AIM: To investigate the role of Beclin 1 on the susceptibility of HepG2 cells to undergo apoptosis after anti-Fas antibody or doxorubicin treatment. METHODS: Beclin 1 silencing was achieved using RNA interference. DNA ploidy, the percentage of apoptotic cells and the mitochondrial membrane potential were assessed by flow cytometry. Levels of Beclin 1, BCI-XL and cytochrome c, and the cleavage of poly (ADP-ribose) polymerase (PARP) were assayed by using Western blots. RESULTS: Beclin 1 expression decreased by 75% 72 h after Beclin 1 siRNA transfection. Partial Beclin 1 silencing significantly increased the percentage of subG1 cells 24 and 40 h after treatment with doxorubicin or anti-Fas antibody, respectively, and this potentiation was abrogated by treatment with a pan-caspase inhibitor. Partial Beclin 1 silencing also increased PARP cleavage, mitochondrial membrane depolarization and cytosolic cytochrome c. The pro-apoptotic consequences of partial Beclin 1 silencing were not associated with a decline in Bcl-XL expression.CONCLUSION: Partial Beclin 1 silencing aggravates mitochondrial permeabilization and apoptosis in HepG2 cells treated with an anti-Fas antibody or with doxorubicin.
基金Supported by The National Natural Science Foundation of China (No. 30872481)the Scientific and Technological Planning Foundation of Shaanxi Province (No. 2006K09-G7-1)
文摘AIM: To investigate the signaling pathways implicated in phosphatidylethanolamine (PE)-induced apoptosis of human hepatoma HepG2 cells. METHODS: Inhibitory effects of PE on human hepatoma HepG2 cells were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell cycle, apoptosis and mitochondrial transmembrane potential (ΔΨm) were analyzed by flow cytometry. Immunocytochemical assay and Western blotting were used to examine Bcl-2, Bax and caspase-3 protein levels in HepG2 cells treated with PE. RESULTS: PE inhibited the growth of HepG2 cells in a doseand timedependent manner. It did notaffect the cell cycle, but induced apoptosis. PE significantly decreased ΔΨm at 0.25, 0.5 and 1 mmol/L, respectively, suggesting that PE induces cell apoptosis by decreasing the mitochondrial transmembrane potential. The Bcl-2 expression level induced by different concentrations of PE was lower than that in control groups. However, the Bax expression level induced by PE was higher than that in the control group. Meanwhile, PE increased the caspase-3 expression in a doseand time-dependent manner. CONCLUSION: Exogenous PE induces apoptosis of human hepatoma HepG2 cells via the bcl-2/bax pathway.
基金Supported by Guangdong Provincial Science and Technology Projects,No.2011B050400009Scientific Research Projects of Hubei Province Education Department,No.B2014055
文摘AIM: To investigate the effect of GW4064 on the expression of adipokines and their receptors during differentiation of 3T3-L1 preadipocytes and in HepG2 cells.
文摘AIM: To clarify the mechanism underlying the anti-mutagenic and anti-cancer activities of Scorpio water extract (SWE). METHODS: Human hepatoma HepG2 cells were incubated with various concentrations of SWE. After 24-h incubation, cytotoxicity and apoptosis evaluations were determined by MTT and DNA fragmentation assay, respectively. After treatment with SWE, mitochondrial membrane potential (MMP) was determined by measuring the retention of the dye 3,3'-dihexyloxacarbocyanine (DiOC6(3)) and the protein expression including cytochrome C and poly-(ADPribose) polymerase (PARP) were measured by Western blotting. Caspase-3 and -9 enzyme activities were measured using specific fluorescence dyes such as Ac-DEVD-AFC and Ac-LEHD-AFC. RESULTS: We found that treatment with SWE induced apoptosis as confirmed by discontinuous DNA fragmentation in cultured human hepatoma HepG2 cells. Our investigation also showed that SWE-induced apoptosis of HepG2 cells were associated with intracellular events including disruption of MMP, increased translocation of cytochrome C from mitochondria to cytosol, activation of caspase-3, and PARP. Pre-treatment of N-acetyl-Asp-Glu-Val-Asp-CHO (Ac-DEVD-CHO), a caspase-3 specific inhibitor, or cyclosporin A (CsA), an inhibitor of MMP disruption, completely abolished SWE-induced DNA fragmentation. CONCLUSION: These results suggest that SWE possibly causes mitochondrial damage, leading to cytochrome C release into cytosol and activation of caspases resulting in PARP cleavage and execution of apoptotic cell death in HepG2 cells. These results further suggest that Scorpio may be a valuable agent of therapeutic intervention of human hepatomas.
基金supported by grants from the National Natural Science Foundation of China (30901943)the Program for New Century Excellent Talents in University (NCET-04-0437)+1 种基金the E-institute of Shanghai Municipal Education Commission (E03008)the Innovative Research Team in Universities of Shanghai Municipal Education Commission
文摘BACKGROUND: Enzymes involved in drug and xenobiotic metabolism have been considered to exist in two groups: phase I and phase II enzymes. Cytochrome P450 isoenzymes (CYPs) are the most important phase I enzymes in the metabolism of xenobiotics. The products of phase I metabolism are then acted upon by phase II enzymes, including glutathione S-transferases (GSTs). Herbs that inhibit CYPs such as CYP3A4 or that induce GSTs may have the potential to protect against chemical carcinogenesis since the mutagenic effects of carcinogens are often mediated through an excess of CYP-generated reactive intermediates. This study was designed to investigate the effects of salvianolic acid B (Sal B), a pure compound extracted from Radix Salviae Miltiorrhizae, a Chinese herb, on cell proliferation and CYP1A2 and CYP3A4 mRNA expression in the presence or absence of rifampicin, a potent inducer of CYPs and GST protein expression in HepG2 cells. METHODS: HepG2 cells were incubated with different concentrations of Sal B. Cell proliferation was determined by SYTOX-Green nucleic acid staining. CYP3A4 and CYP1A2 mRNA expression was assayed by real-time PCR. GST protein expression was analyzed by Western blotting. RESULTS: Low concentrations of Sal B (0-20 μmol/L) had no significant effects on cell proliferation, while higher concentrations (100-250 μmol/L) significantly inhibited proliferation in a concentration-dependent manner. Ten μmol/L Sal B, but not 1 μmol/L, down-regulated CYP3A4 and CYP1A2 mRNA expression after 24 hours of incubation, whereas both 1 and 10 μmol/L Sal B down-regulated CYP3A4mRNA expression after 96 hours of incubation; moreover, 1 and 10 μmol/L Sal B inhibited CYP3A4 mRNA expression induced by rifampicin. Both 1 μmol/L and 10 μmol/L Sal B increased GST expression. CONCLUSION: Sal B inhibits CYP3A4 and CYP1A2 mRNA expression and induces GST expression in HepG2 cells.
基金The National Natural Science Foundation of China(31850410476)the Major Projects of Science and Technology in Anhui Province(18030701144,1804b06020347,18030701142,18030701158,201903a06020021).
文摘The anticancer activity of stevenleaf(SV)on the basis of cell viability,cell cycle,and apoptosis induction in HepG2 cancer cells were evaluated.SV controlled the growth of HepG2 cells with IC50 of 139.82μmol/L for 24 h,IC50 of 119.12μmol/L for 48 h and cell cycle arrested at G0/G1 phase,induced cell apoptosis and enhanced intracellular ROS generation.For cell cycle arrest,the mRNA expression levels of p21,p27 and p53 were up-regulated,while the expression levels of Cyclin A,Cyclin D1,Cyclin E and CDK1/2 were downregulated.SV efficiently up-regulated TNF R1,TRADD1 and FADD and down-regulated Caspase8 for cell death receptors;similarly,up-regulated Bax,Bak,Cytc,Apaf1,Caspase3 and Caspase9,and down-regulated Bcl2,Bcl xl and Bad for mitochondrial signal pathway.SV induced the mTOR-mediated cell apoptosis in HepG2 cells via activation of Akt and AMPK.The mechanistic explanation for the anticancer activity of SV as functional food can be derived from above results.
基金China National Major Projects(2009ZX09103-436)and 973 Program(2011CB915503)of Science and Technology of P.R.Chinathe reservation-talent project of Yunnan Province(2009CI073)+1 种基金the foundation of study abroad returnees from Ministry of Personnel for financial support(Ms.Li-Xin Yang)the foundations from CAS(Dr.Gang Xu).
文摘Medicinal plants have a long history of use in China to treat diabetic symptoms.Ancient Chinese medical manuscripts and ethnobotanical surveys document plant remedies that continue to be actively used in China for the treatment of diabetic symptoms.Based on a systematic ancient Chinese medical manuscripts review in combination with ethnobotanical survey,16 medicinal plants for the traditional treatment of diabetic symptoms were identified for the evaluation of anti-insulin resistance bioactivity.The biological activity of 16 medicinal plants was tested on dexamethasone(DXMS)-induced insulin resistant HepG2 cells.The result shows that 11 of the 16 medicinal plants enhanced glucose uptake of DXMS-induced insulin resistant HepG2 cells,thereby demonstrating their ability to increase insulin sensitivity,other five medicinal plants including Astragalus membranaceus were found ineffective.The study shows that ancient Chinese medical manuscripts and ethnobotanical surveys on plants for the prevention and treatment of diabetic symptoms provide a promising knowledge base for drug discovery to mitigate the global diabetes epidemic.
基金supported by National Key Research&Development Program of China(2017YFC1600401-3)National Natural Science Foundation of China(31871749 and 31701567)。
文摘Antioxidant peptides have been widely reported.However,only a few reports have been published examining the antioxidant peptides derived from Chinese baijiu.In this study,6 novel peptides derived from Chinese baijiu were identified successfully using high-performance liquid chromatography-quadrupoletime-of-flight mass spectrometry(HPLC-QTOF-MS)with a concentration of 0.835–24.540μg/L.The underlying molecular mechanisms were investigated,and their cytoprotective effects were examined against 2,2’-azobis(2-methylpropanimidamidine)dihydrochloride(AAPH)-induced oxidative stress in Hep G2 cells.The results showed that these peptides exerted protective effects by suppressing reactive oxygen species(ROS)generation,preventing malondialdehyde(MDA)formation,and upregulating cellular antioxidant enzyme activities(SOD,CAT,and GSH-Px)in a dose-dependent manner.Further experiments proved that these peptides exerted antioxidant effects via Nrf2/ARE-mediated signaling pathway by promoting Nrf2 nuclear translocation,inhibiting ubiquitination,and enhancing transcription capacity of Nrf2 in Hep G2 cells.These findings provide the molecular basis for the effects of antioxidant peptides derived from Chinese baijiu,which is important for a deeper understanding of the relationship between human health and moderate drinking.