Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory p...Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory pain,but its role in morphine tolerance is unclear.In this study,we established rat and mouse models of morphine tolerance by intrathecal injection of morphine for 7 consecutive days.We found that morphine induced rat spinal cord neurons to release a large amount of HMGB1.HMGB1 regulated nuclear factor κB p65 phosphorylation and interleukin-1β production by increasing Toll-like receptor 4receptor expression in microglia,thereby inducing morphine tolerance.Glycyrrhizin,an HMGB1 inhibito r,markedly attenuated chronic morphine tole rance in the mouse model.Finally,compound C(adenosine 5’-monophosphate-activated protein kinase inhibitor) and zinc protoporphyrin(heme oxygenase-1 inhibitor)alleviated the morphine-induced release of HMGB1 and reduced nuclear factor κB p65 phosphorylation and interleukin-1β production in a mouse model of morphine tolerance and an SH-SY5Y cell model of morphine tole rance,and alleviated morphine tolerance in the mouse model.These findings suggest that morphine induces HMGB1 release via the adenosine 5’-monophosphate-activated protein kinase/heme oxygenase-1 signaling pathway,and that inhibiting this signaling pathway can effectively reduce morphine tole rance.展开更多
目的:主要研究乙肝病毒(hepatitis B virus,HBV)感染肝细胞后,细胞周期激酶2(cyclin-dependent kinase 2,CDK2)调控宿主限制性因子SAMHD1(sterile alpha motif and histidine/aspartic acid domain-containing protein 1)磷酸化的分子...目的:主要研究乙肝病毒(hepatitis B virus,HBV)感染肝细胞后,细胞周期激酶2(cyclin-dependent kinase 2,CDK2)调控宿主限制性因子SAMHD1(sterile alpha motif and histidine/aspartic acid domain-containing protein 1)磷酸化的分子机制。方法:利用si RNA干扰技术,特异性处理肝癌细胞Huh7.0的对照组、干扰CDK1组和干扰CDK2组,分别用Southern blot检测这3组中乙肝病毒复制的变化,Western blot检测这3组中SAMHD1磷酸化水平的变化,流式细胞仪检测这3组中细胞周期的变化;进一步通过免疫共沉淀技术鉴定肝癌细胞中CDK2激酶和SAMHD1的相互作用。结果:在肝癌细胞Huh7.0中,与对照组相比,干扰CDK1组和干扰CDK2组的细胞周期明显有差异,分别停滞在G_2期(P=0.001)或G1期(P=0.001)。Western blot结果表明,干扰CDK2后,宿主限制性因子SAMHD1磷酸化水平下降48%,Southern blot结果表明病毒复制水平降低57%(P=0.003),而干扰CDK1后病毒复制水平没有明显变化(P=0.325)进一步通过免疫共沉淀发现在肝癌细胞Huh7.0中,CDK2激酶可与SAMHD1发生相互作用,并且相互作用发生在细胞核内。结论:HBV感染肝细胞后,募集CDK2调控宿主限制性因子SAMHD1的磷酸化,拮抗其抗病毒作用。展开更多
Approximately 170 million people worldwide are chronically infected with hepatitis C virus(HCV).Chronic HCV infection is the leading cause for the development of liver fibrosis,cirrhosis,hepatocellular carcinoma(HCC)a...Approximately 170 million people worldwide are chronically infected with hepatitis C virus(HCV).Chronic HCV infection is the leading cause for the development of liver fibrosis,cirrhosis,hepatocellular carcinoma(HCC)and is the primary cause for liver transplantation in the western world.Insulin resistance is one of the pathological features in patients with HCV infection and often leads to development of typeⅡdiabetes.Insulin resistance plays an important role in the development of various complications associated with HCV infection.Recent evidence indicates that HCV associated insulin resistance may result in hepatic fibrosis,steatosis,HCC and resistance to anti-viral treatment.Thus,HCV associated insulin resistance is a therapeutic target at any stage of HCV infection.HCV modulates normal cellular gene expression and interferes with the insulin signaling pathway.Various mechanisms have been proposed in regard to HCV mediated insulin resistance,involving up regulation of inflammatory cytokines,like tumor necrosis factor-α,phosphorylation of insulin-receptor substrate-1,Akt,up-regulation of gluconeogenic genes like glucose 6 phosphatase,phosphoenolpyruvate carboxykinase 2,and accumulation of lipid droplets.In this review,we summarize the available information on how HCV infection interferes with insulin signaling pathways resulting in insulin resistance.展开更多
Inflammation may play a role in postoperative cognitive dysfunction. 5' Adenosine monophos- phate-activated protein kinase, nuclear factor-kappa B, interleukin-1β, and tumor necrosis factor-a are involved in inflamm...Inflammation may play a role in postoperative cognitive dysfunction. 5' Adenosine monophos- phate-activated protein kinase, nuclear factor-kappa B, interleukin-1β, and tumor necrosis factor-a are involved in inflammation. Therefore, these inflammatory mediators may be involved in postoperative cognitive dysfunction. Western immunoblot analysis revealed 5' adenosine mo- nophosphate-activated protein kinase and nuclear factor-kappa B in the hippocampus of aged rats were increased 1-7 days after splenectomy. Moreover, interleukin-1β and tumor necrosis fac- tor-α were upregulated and gradually decreased. Therefore, these inflammatory mediators may participate in the splenectomy model of postoperative cognitive dysfunction in aged rats.展开更多
基金supported by the National Natural Science Foundation of ChinaNos.81971047 (to WTL) and 82073910 (to XFW)+2 种基金the Natural Science Foundation of Jiangsu Province,No.BK20191253 (to XFW)Key R&D Program (Social Development) Project of Jiangsu Province,No.BE2019 732 (to WTL)Jiangsu Province Hospital (the First Affiliated Hospital of Nanjing Medical University) Clinical Capacity Enhancement Project,No.JSPH-511B2018-8 (to YBP)。
文摘Opioids,such as morphine,are the most potent drugs used to treat pain.Long-term use results in high tolerance to morphine.High mobility group box-1(HMGB1) has been shown to participate in neuropathic or inflammatory pain,but its role in morphine tolerance is unclear.In this study,we established rat and mouse models of morphine tolerance by intrathecal injection of morphine for 7 consecutive days.We found that morphine induced rat spinal cord neurons to release a large amount of HMGB1.HMGB1 regulated nuclear factor κB p65 phosphorylation and interleukin-1β production by increasing Toll-like receptor 4receptor expression in microglia,thereby inducing morphine tolerance.Glycyrrhizin,an HMGB1 inhibito r,markedly attenuated chronic morphine tole rance in the mouse model.Finally,compound C(adenosine 5’-monophosphate-activated protein kinase inhibitor) and zinc protoporphyrin(heme oxygenase-1 inhibitor)alleviated the morphine-induced release of HMGB1 and reduced nuclear factor κB p65 phosphorylation and interleukin-1β production in a mouse model of morphine tolerance and an SH-SY5Y cell model of morphine tole rance,and alleviated morphine tolerance in the mouse model.These findings suggest that morphine induces HMGB1 release via the adenosine 5’-monophosphate-activated protein kinase/heme oxygenase-1 signaling pathway,and that inhibiting this signaling pathway can effectively reduce morphine tole rance.
基金Supported by The National Institutes of Health,NO.DK080812
文摘Approximately 170 million people worldwide are chronically infected with hepatitis C virus(HCV).Chronic HCV infection is the leading cause for the development of liver fibrosis,cirrhosis,hepatocellular carcinoma(HCC)and is the primary cause for liver transplantation in the western world.Insulin resistance is one of the pathological features in patients with HCV infection and often leads to development of typeⅡdiabetes.Insulin resistance plays an important role in the development of various complications associated with HCV infection.Recent evidence indicates that HCV associated insulin resistance may result in hepatic fibrosis,steatosis,HCC and resistance to anti-viral treatment.Thus,HCV associated insulin resistance is a therapeutic target at any stage of HCV infection.HCV modulates normal cellular gene expression and interferes with the insulin signaling pathway.Various mechanisms have been proposed in regard to HCV mediated insulin resistance,involving up regulation of inflammatory cytokines,like tumor necrosis factor-α,phosphorylation of insulin-receptor substrate-1,Akt,up-regulation of gluconeogenic genes like glucose 6 phosphatase,phosphoenolpyruvate carboxykinase 2,and accumulation of lipid droplets.In this review,we summarize the available information on how HCV infection interferes with insulin signaling pathways resulting in insulin resistance.
文摘Inflammation may play a role in postoperative cognitive dysfunction. 5' Adenosine monophos- phate-activated protein kinase, nuclear factor-kappa B, interleukin-1β, and tumor necrosis factor-a are involved in inflammation. Therefore, these inflammatory mediators may be involved in postoperative cognitive dysfunction. Western immunoblot analysis revealed 5' adenosine mo- nophosphate-activated protein kinase and nuclear factor-kappa B in the hippocampus of aged rats were increased 1-7 days after splenectomy. Moreover, interleukin-1β and tumor necrosis fac- tor-α were upregulated and gradually decreased. Therefore, these inflammatory mediators may participate in the splenectomy model of postoperative cognitive dysfunction in aged rats.