期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A new non-fullerene acceptor based on the heptacyclic benzotriazole unit for efficient organic solar cells 被引量:5
1
作者 Mei Luo Liuyang Zhou +4 位作者 Jun Yuan Can Zhu Fangfang Cai Jiefeng Hai Yingping Zou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第3期169-173,共5页
Non-fullerene acceptors(NFAs)become an interesting family of organic photovoltaic materials,and have attracted considerable interest for their great potential in manufacturing large-area flexible solar panels by low c... Non-fullerene acceptors(NFAs)become an interesting family of organic photovoltaic materials,and have attracted considerable interest for their great potential in manufacturing large-area flexible solar panels by low cost coating methods[1–5].Recently,our group proposed in the first time an A-DA’D-A molecular strategy and synthesized a new class of non-fullerene acceptor Y6 with a record efficiency above 15%with single junction organic solar cells(OSCs)[6].To further improve the photovoltaic performance of OSCs,many effective strategies have been successfully explored,such as side-chain engineering and extension of fused core and terminal group engineering[7–12].As well-known,PCE of devices is determined by the open circuit voltage(Voc),short-circuit current density(Jsc)and fill factor(FF)[13].Among them,Voc is associated with low-lying highest occupied molecular orbital(HOMO)of donor and lowest unoccupied molecular orbital(LUMO)of acceptor of the active layer[14–16].Side-chain engineering is an effective strategy for manipulating energy levels and improving photovoltaic performance of devices[17–19].For example,introducing the alkyl/alkoxy chains can effectively tune the HOMO/LUMO energy levels[20–22].Tang et al.have reported a novel non-fullerene acceptor ITC6-IC.ITC6-IC has relatively high LUMO level and high Voc than those of ITIC due to the introduction of weak electrondonating hexyl group on thiophene[23]. 展开更多
关键词 Near-infrared ELECTRON ACCEPTOR Y9 Ladder-type heptacyclic fused ring Non-fullerene ELECTRON acceptors High-performance OSCs
下载PDF
A Near-infrared Non-fullerene Acceptor with Thienopyrrole-expanded Benzo[1,2-b:4,5-b′]dithiophene Core for Polymer Solar Cells 被引量:2
2
作者 Zhen Chen Shan-Shan Ma +4 位作者 Kai Zhang Zhi-Cheng Hu Qing-Wu Yin Fei Huang Yong Cao 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2021年第1期35-42,I0005,共9页
A near-infrared non-fullerene acceptor(NFA) BDTIC, based on thienopyrrole-expanded benzo[1,2-b:4,5-b′]dithiophene unit(heptacyclic S,N-heteroacene) as core, is designed and synthesized. The aromatic pyrrole ring with... A near-infrared non-fullerene acceptor(NFA) BDTIC, based on thienopyrrole-expanded benzo[1,2-b:4,5-b′]dithiophene unit(heptacyclic S,N-heteroacene) as core, is designed and synthesized. The aromatic pyrrole ring with strong electron-donating ability in the core enhances the intramolecular charge transfer effect, finely tunes the optical bandgap and absorption profile of BDTIC, and thus results in a narrowed optical bandgap(E_(g)^(opt)) of 1.38 eV and a near-infrared absorption to 900 nm. When BDTIC is paired with donor polymer PBDB-T to fabricate organic solar cells, the optimized device achieves a best power conversion efficiency of 12.1% with a short-circuit current density of 20.0 mA·cm^(-2) and an open-circuit voltage of 0.88 V. The photovoltaic performance benefits from the broad absorption, weak bimolecular recombination, efficient charge separation and collection, and favorable blend morphology. This work demonstrates that thienopyrroleexpanded benzo[1,2-b:4,5-b′]dithiophene unit(heptacyclic S,N-heteroacene) is a promising building unit to construct high-performance NFAs by enhancing the intramolecular charge transfer effect, broadening absorption as well as maintaining good intermolecular stacking property. 展开更多
关键词 Organic solar cells(OSCs) Non-fullerene acceptors(NFAs) heptacyclic S N-heteroacene
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部