By virtue of the operator-Hermite-polynomial method, we derive some new generating function formulas of the product of two bivariate Hermite polynomials. Their applications in studying quantum optical states are prese...By virtue of the operator-Hermite-polynomial method, we derive some new generating function formulas of the product of two bivariate Hermite polynomials. Their applications in studying quantum optical states are presented.展开更多
We reveal that the two-variable Hermite function hm,n, which is the generalized Bargmann representation of the two-mode Fock state, involves quantum entanglement of harmonic oscillator's wave functions. The Schmidt d...We reveal that the two-variable Hermite function hm,n, which is the generalized Bargmann representation of the two-mode Fock state, involves quantum entanglement of harmonic oscillator's wave functions. The Schmidt decomposition of hm,n is derived. It also turns out that hm,n can be generated by windowed Fourier transform of the single-variable Hermite functions. As an application, the wave function of the two-variable Hermite polynomial state S(γ)Hm,n (μa1^+, μa2^+│00〉, which is the minimum uncertainty state for sum squeezing, in ( η│representation is calculated.展开更多
Some new Hermite-Hadamard type's integral equations and inequalities are established. The results in [3] and [6] which refined the upper bound of distance between the middle and left of the typical Hermite-Hadamar...Some new Hermite-Hadamard type's integral equations and inequalities are established. The results in [3] and [6] which refined the upper bound of distance between the middle and left of the typical Hermite-Hadamard's integral inequality are generalized.展开更多
In this paper, we first introduce the concept "harmonically convex functions" in the second sense and establish several Hermite-Hadamard type inequalities for harmonically convex functions in the second sense. Final...In this paper, we first introduce the concept "harmonically convex functions" in the second sense and establish several Hermite-Hadamard type inequalities for harmonically convex functions in the second sense. Finally, some applications to special mean are shown.展开更多
Using the coherent state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, this paper derives the Wigner function for the Hermite polynomial state (HP...Using the coherent state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, this paper derives the Wigner function for the Hermite polynomial state (HPS). The tomogram of the HPS is calculated with the aid of newly introduced intermediate coordinate-momentum representation in quantum optics.展开更多
In the paper, the authors find some new inequalities of Hermite-Hadamard type for functions whose third derivatives are s-convex and apply these inequalities to discover inequalities for special means.
The object of this paper is to establish the pointwise estimations of approximation of functions in C^1 and their derivatives by Hermite interpolation polynomials. The given orders have been proved to be exact in gen-...The object of this paper is to establish the pointwise estimations of approximation of functions in C^1 and their derivatives by Hermite interpolation polynomials. The given orders have been proved to be exact in gen- eral.展开更多
By utilizing symmetric functions,this paper presents explicit representations for Hermite interpolation and its numerical differentiation formula.And the corresponding error estimates are also provided.
We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Herm...We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Hermite polynomial method and the technique of integration within an ordered product of operators to solve these problems, which will be useful in constructing new optical field states.展开更多
Hermite interpolation is a very important tool in approximation theory and nu- merical analysis, and provides a popular method for modeling in the area of computer aided geometric design. However, the classical Hermit...Hermite interpolation is a very important tool in approximation theory and nu- merical analysis, and provides a popular method for modeling in the area of computer aided geometric design. However, the classical Hermite interpolant is unique for a prescribed data set, and hence lacks freedom for the choice of an interpolating curve, which is a crucial requirement in design environment. Even though there is a rather well developed fractal theory for Hermite interpolation that offers a large flexibility in the choice of interpolants, it also has the short- coming that the functions that can be well approximated are highly restricted to the class of self-affine functions. The primary objective of this paper is to suggest a gl-cubic Hermite in- terpolation scheme using a fractal methodology, namely, the coalescence hidden variable fractal interpolation, which works equally well for the approximation of a self-affine and non-self-affine data generating functions. The uniform error bound for the proposed fractal interpolant is established to demonstrate that the convergence properties are similar to that of the classical Hermite interpolant. For the Hermite interpolation problem, if the derivative values are not actually prescribed at the knots, then we assign these values so that the interpolant gains global G2-continuity. Consequently, the procedure culminates with the construction of cubic spline coalescence hidden variable fractal interpolants. Thus, the present article also provides an al- ternative to the construction of cubic spline coalescence hidden variable fractal interpolation functions through moments proposed by Chand and Kapoor [Fractals, 15(1) (2007), pp. 41-53].展开更多
By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials wh...By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials which will be useful in constructing new optical field states. We then show that the squeezed state and photon-added squeezed state can be expressed by even- and odd-Hermite polynomials.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.11175113)the Fundamental Research Funds for the Central Universities of China(Grant No.WK2060140013)the Natural Science Foundation of Jiangsu Higher Education Institution of China(Grant No.14KJD140001)
文摘By virtue of the operator-Hermite-polynomial method, we derive some new generating function formulas of the product of two bivariate Hermite polynomials. Their applications in studying quantum optical states are presented.
文摘We reveal that the two-variable Hermite function hm,n, which is the generalized Bargmann representation of the two-mode Fock state, involves quantum entanglement of harmonic oscillator's wave functions. The Schmidt decomposition of hm,n is derived. It also turns out that hm,n can be generated by windowed Fourier transform of the single-variable Hermite functions. As an application, the wave function of the two-variable Hermite polynomial state S(γ)Hm,n (μa1^+, μa2^+│00〉, which is the minimum uncertainty state for sum squeezing, in ( η│representation is calculated.
基金Supported by the key scientific and technological innovation team project in shaanxi province(2014KCT-15)the Foundations of Shaanxi Educational committee(NO.18Jk0152)
文摘Some new Hermite-Hadamard type's integral equations and inequalities are established. The results in [3] and [6] which refined the upper bound of distance between the middle and left of the typical Hermite-Hadamard's integral inequality are generalized.
基金The Doctoral Programs Foundation(20113401110009)of Education Ministry of ChinaNatural Science Research Project(2012kj11)of Hefei Normal University+1 种基金Universities Natural Science Foundation(KJ2013A220)of Anhui ProvinceResearch Project of Graduates Innovation Fund(2014yjs02)
文摘In this paper, we first introduce the concept "harmonically convex functions" in the second sense and establish several Hermite-Hadamard type inequalities for harmonically convex functions in the second sense. Finally, some applications to special mean are shown.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574060) and the Natural Science Foundation of Shandong Province of China (Grant No Y2004A09).
文摘Using the coherent state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, this paper derives the Wigner function for the Hermite polynomial state (HPS). The tomogram of the HPS is calculated with the aid of newly introduced intermediate coordinate-momentum representation in quantum optics.
文摘In the paper, the authors find some new inequalities of Hermite-Hadamard type for functions whose third derivatives are s-convex and apply these inequalities to discover inequalities for special means.
文摘The object of this paper is to establish the pointwise estimations of approximation of functions in C^1 and their derivatives by Hermite interpolation polynomials. The given orders have been proved to be exact in gen- eral.
基金Supported by the Education Department of Zhejiang Province (Y200806015)
文摘By utilizing symmetric functions,this paper presents explicit representations for Hermite interpolation and its numerical differentiation formula.And the corresponding error estimates are also provided.
基金Project supported by the National Natural Science Foundation of China(Grnat No.11175113)the Fundamental Research Funds for the Central Universities of China(Grant No.WK2060140013)
文摘We derive some new generating function formulae of the two-variable Hermite polynomials, such as ∞∑n=0tm/m!Hn,2m(x),∞∑n=0sntm/n!m!H2n,2m(x,y),and ∞∑n=0sntm/n!m!H2n+l,2m+k(x,y).We employ the operator Hermite polynomial method and the technique of integration within an ordered product of operators to solve these problems, which will be useful in constructing new optical field states.
基金partially supported by the CSIR India(Grant No.09/084(0531)/2010-EMR-I)the SERC,DST India(Project No.SR/S4/MS:694/10)
文摘Hermite interpolation is a very important tool in approximation theory and nu- merical analysis, and provides a popular method for modeling in the area of computer aided geometric design. However, the classical Hermite interpolant is unique for a prescribed data set, and hence lacks freedom for the choice of an interpolating curve, which is a crucial requirement in design environment. Even though there is a rather well developed fractal theory for Hermite interpolation that offers a large flexibility in the choice of interpolants, it also has the short- coming that the functions that can be well approximated are highly restricted to the class of self-affine functions. The primary objective of this paper is to suggest a gl-cubic Hermite in- terpolation scheme using a fractal methodology, namely, the coalescence hidden variable fractal interpolation, which works equally well for the approximation of a self-affine and non-self-affine data generating functions. The uniform error bound for the proposed fractal interpolant is established to demonstrate that the convergence properties are similar to that of the classical Hermite interpolant. For the Hermite interpolation problem, if the derivative values are not actually prescribed at the knots, then we assign these values so that the interpolant gains global G2-continuity. Consequently, the procedure culminates with the construction of cubic spline coalescence hidden variable fractal interpolants. Thus, the present article also provides an al- ternative to the construction of cubic spline coalescence hidden variable fractal interpolation functions through moments proposed by Chand and Kapoor [Fractals, 15(1) (2007), pp. 41-53].
基金supported by the National Natural Science Foundation of China(Grant No.11175113)the Fundamental Research Funds for the Central Universities of China(Grant No.WK2060140013)
文摘By combining the operator Hermite polynomial method and the technique of integration within an ordered product of operators, for the first time we derive the generating function of even- and odd-Hermite polynomials which will be useful in constructing new optical field states. We then show that the squeezed state and photon-added squeezed state can be expressed by even- and odd-Hermite polynomials.