In this paper, we consider the positive semidefinite solution of the matrix equation (AT X A, BT X B) - (C, D). A necessary and sufficient condition for the existence of such solution is derived using the generalized ...In this paper, we consider the positive semidefinite solution of the matrix equation (AT X A, BT X B) - (C, D). A necessary and sufficient condition for the existence of such solution is derived using the generalized singular value decomposition.The general forms of positive semidefinite solution are given.展开更多
Least-squares solution of AXB = D with respect to symmetric positive semidefinite matrix X is considered. By making use of the generalized singular value decomposition, we derive general analytic formulas, and present...Least-squares solution of AXB = D with respect to symmetric positive semidefinite matrix X is considered. By making use of the generalized singular value decomposition, we derive general analytic formulas, and present necessary and sufficient conditions for guaranteeing the existence of the solution. By applying MATLAB 5.2, we give some numerical examples to show the feasibility and accuracy of this construction technique in the finite precision arithmetic.展开更多
基金Partially supported by the National Natural Science Foundation of China(No10071035) and the Doctor Foundation of Hunan Normal University.
文摘In this paper, we consider the positive semidefinite solution of the matrix equation (AT X A, BT X B) - (C, D). A necessary and sufficient condition for the existence of such solution is derived using the generalized singular value decomposition.The general forms of positive semidefinite solution are given.
基金Subsidized by The Special Funds For Major State Basic Research Project G1999032803.
文摘Least-squares solution of AXB = D with respect to symmetric positive semidefinite matrix X is considered. By making use of the generalized singular value decomposition, we derive general analytic formulas, and present necessary and sufficient conditions for guaranteeing the existence of the solution. By applying MATLAB 5.2, we give some numerical examples to show the feasibility and accuracy of this construction technique in the finite precision arithmetic.