The inexact Rayleigh quotient iteration (RQI) is used for computing the smallest eigenpair of a large Hermitian matrix. Under certain condition, the method was proved to converge quadratically in literature. However, ...The inexact Rayleigh quotient iteration (RQI) is used for computing the smallest eigenpair of a large Hermitian matrix. Under certain condition, the method was proved to converge quadratically in literature. However, it is shown in this paper that under the original given condition the inexact RQI may not quadratically converge to the desired eigenpair and even may misconverge to some other undesired eigenpair. A new condition, called the uniform positiveness condition, is given that can fix misconvergence problem and ensure the quadratic convergence of the inexact RQI. An alternative to the inexact RQI is the Jacobi-Davidson (JD) method without subspace acceleration. A new proof of its linear convergence is presented and a sharper bound is established in the paper. All the results are verified and analyzed by numerical experiments.展开更多
Let G be a simple graph with n vertices and m edges. Let λ1, λ2,…, λn, be the adjacency spectrum of G, and let μ1, μ2,…, μn be the Laplacian spectrum of G. The energy of G is E(G) = n∑i=1|λi|, while the ...Let G be a simple graph with n vertices and m edges. Let λ1, λ2,…, λn, be the adjacency spectrum of G, and let μ1, μ2,…, μn be the Laplacian spectrum of G. The energy of G is E(G) = n∑i=1|λi|, while the Laplacian energy of G is defined as LE(G) = n∑i=1|μi-2m/n| Let γ1, γ2, ~ …, γn be the eigenvalues of Hermite matrix A. The energy of Hermite matrix as HE(A) = n∑i=1|γi-tr(A)/n| is defined and investigated in this paper. It is a natural generalization of E(G) and LE(G). Thus all properties about energy in unity can be handled by HE(A).展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 10471074, 10771116)the Doctoral Program of the Ministry of Education of China (Grant No. 20060003003)
文摘The inexact Rayleigh quotient iteration (RQI) is used for computing the smallest eigenpair of a large Hermitian matrix. Under certain condition, the method was proved to converge quadratically in literature. However, it is shown in this paper that under the original given condition the inexact RQI may not quadratically converge to the desired eigenpair and even may misconverge to some other undesired eigenpair. A new condition, called the uniform positiveness condition, is given that can fix misconvergence problem and ensure the quadratic convergence of the inexact RQI. An alternative to the inexact RQI is the Jacobi-Davidson (JD) method without subspace acceleration. A new proof of its linear convergence is presented and a sharper bound is established in the paper. All the results are verified and analyzed by numerical experiments.
基金supported by the National Natural Science Foundation of China(10771080)
文摘Let G be a simple graph with n vertices and m edges. Let λ1, λ2,…, λn, be the adjacency spectrum of G, and let μ1, μ2,…, μn be the Laplacian spectrum of G. The energy of G is E(G) = n∑i=1|λi|, while the Laplacian energy of G is defined as LE(G) = n∑i=1|μi-2m/n| Let γ1, γ2, ~ …, γn be the eigenvalues of Hermite matrix A. The energy of Hermite matrix as HE(A) = n∑i=1|γi-tr(A)/n| is defined and investigated in this paper. It is a natural generalization of E(G) and LE(G). Thus all properties about energy in unity can be handled by HE(A).