This paper discusses the necessary and sufficient conditions for the existence of Hermite positive definite solutions of the quaternion matrix equation X<sup>m</sup>+ B*XB = C (m > 0) and its iterative ...This paper discusses the necessary and sufficient conditions for the existence of Hermite positive definite solutions of the quaternion matrix equation X<sup>m</sup>+ B*XB = C (m > 0) and its iterative solution method. According to the characteristics of the coefficient matrix, a corresponding algebraic equation system is ingeniously constructed, and by discussing the equation system’s solvability, the matrix equation’s existence interval is obtained. Based on the characteristics of the coefficient matrix, some necessary and sufficient conditions for the existence of Hermitian positive definite solutions of the matrix equation are derived. Then, the upper and lower bounds of the positive actual solutions are estimated by using matrix inequalities. Four iteration formats are constructed according to the given conditions and existence intervals, and their convergence is proven. The selection method for the initial matrix is also provided. Finally, using the complexification operator of quaternion matrices, an equivalent iteration on the complex field is established to solve the equation in the Matlab environment. Two numerical examples are used to test the effectiveness and feasibility of the given method. .展开更多
Geometric structures of a manifold of positive definite Hermite matrices are considered from the viewpoint of information geometry.A Riemannian metric is defined and dual α-connections are introduced.Then the fact th...Geometric structures of a manifold of positive definite Hermite matrices are considered from the viewpoint of information geometry.A Riemannian metric is defined and dual α-connections are introduced.Then the fact that the manifold is ±l-flat is shown.Moreover,the divergence of two points on the manifold is given through dual potential functions.Furthermore,the optimal approximation of a point onto the submanifold is gotten.Finally,some simulations are given to illustrate our results.展开更多
文摘This paper discusses the necessary and sufficient conditions for the existence of Hermite positive definite solutions of the quaternion matrix equation X<sup>m</sup>+ B*XB = C (m > 0) and its iterative solution method. According to the characteristics of the coefficient matrix, a corresponding algebraic equation system is ingeniously constructed, and by discussing the equation system’s solvability, the matrix equation’s existence interval is obtained. Based on the characteristics of the coefficient matrix, some necessary and sufficient conditions for the existence of Hermitian positive definite solutions of the matrix equation are derived. Then, the upper and lower bounds of the positive actual solutions are estimated by using matrix inequalities. Four iteration formats are constructed according to the given conditions and existence intervals, and their convergence is proven. The selection method for the initial matrix is also provided. Finally, using the complexification operator of quaternion matrices, an equivalent iteration on the complex field is established to solve the equation in the Matlab environment. Two numerical examples are used to test the effectiveness and feasibility of the given method. .
基金Supported by Natural Science Foundations of China(Grant No.61179031 and 61401058)
文摘Geometric structures of a manifold of positive definite Hermite matrices are considered from the viewpoint of information geometry.A Riemannian metric is defined and dual α-connections are introduced.Then the fact that the manifold is ±l-flat is shown.Moreover,the divergence of two points on the manifold is given through dual potential functions.Furthermore,the optimal approximation of a point onto the submanifold is gotten.Finally,some simulations are given to illustrate our results.