This paper discusses the necessary and sufficient conditions for the existence of Hermite positive definite solutions of the quaternion matrix equation X<sup>m</sup>+ B*XB = C (m > 0) and its iterative ...This paper discusses the necessary and sufficient conditions for the existence of Hermite positive definite solutions of the quaternion matrix equation X<sup>m</sup>+ B*XB = C (m > 0) and its iterative solution method. According to the characteristics of the coefficient matrix, a corresponding algebraic equation system is ingeniously constructed, and by discussing the equation system’s solvability, the matrix equation’s existence interval is obtained. Based on the characteristics of the coefficient matrix, some necessary and sufficient conditions for the existence of Hermitian positive definite solutions of the matrix equation are derived. Then, the upper and lower bounds of the positive actual solutions are estimated by using matrix inequalities. Four iteration formats are constructed according to the given conditions and existence intervals, and their convergence is proven. The selection method for the initial matrix is also provided. Finally, using the complexification operator of quaternion matrices, an equivalent iteration on the complex field is established to solve the equation in the Matlab environment. Two numerical examples are used to test the effectiveness and feasibility of the given method. .展开更多
The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian ...The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian positive definite matrix and parameters s,t>0. Based on the matrix geometry theory, relevant matrix inequality and linear algebra technology, according to the different value ranges of the parameters s,t, the existence intervals of the Hermitian positive definite solution and the necessary conditions for equation solvability are presented, respectively. Comparing the existing correlation results, the proposed upper and lower bounds of the Hermitian positive definite solution are more accurate and applicable.展开更多
For the lower bound about the determinant of Hadamard product of A and B, where A is a n × n real positive definite matrix and B is a n × n M-matrix, Jianzhou Liu [SLAM J. Matrix Anal. Appl., 18(2)(1997): 30...For the lower bound about the determinant of Hadamard product of A and B, where A is a n × n real positive definite matrix and B is a n × n M-matrix, Jianzhou Liu [SLAM J. Matrix Anal. Appl., 18(2)(1997): 305-311]obtained the estimated inequality as follows det(A o B)≥a11b11 nⅡk=2(bkk detAk/detAk-1+detBk/detBk-1(k-1Ei=1 aikaki/aii))=Ln(A,B),where Ak is kth order sequential principal sub-matrix of A. We establish an improved lower bound of the form Yn(A,B)=a11baa nⅡk=2(bkk detAk/detAk-1+akk detBk/detBk-1-detAdetBk/detak-1detBk-1)≥Ln(A,B).For more weaker and practical lower bound, Liu given thatdet(A o B)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB(nⅡk=2 k-1Ei=1 aikaki/aiiakk)=(L)n(A,B).We further improve it as Yn(A,B)=(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)+max1≤k≤n wn(A,B,k)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)≥(L)n(A,B).展开更多
文摘This paper discusses the necessary and sufficient conditions for the existence of Hermite positive definite solutions of the quaternion matrix equation X<sup>m</sup>+ B*XB = C (m > 0) and its iterative solution method. According to the characteristics of the coefficient matrix, a corresponding algebraic equation system is ingeniously constructed, and by discussing the equation system’s solvability, the matrix equation’s existence interval is obtained. Based on the characteristics of the coefficient matrix, some necessary and sufficient conditions for the existence of Hermitian positive definite solutions of the matrix equation are derived. Then, the upper and lower bounds of the positive actual solutions are estimated by using matrix inequalities. Four iteration formats are constructed according to the given conditions and existence intervals, and their convergence is proven. The selection method for the initial matrix is also provided. Finally, using the complexification operator of quaternion matrices, an equivalent iteration on the complex field is established to solve the equation in the Matlab environment. Two numerical examples are used to test the effectiveness and feasibility of the given method. .
文摘We exploit the theory of reproducing kernels to deduce a matrix inequality for the inverse of the restriction of a positive definite Hermitian matrix.
基金The National Natural Science Foundation of China(No.11371089)the China Postdoctoral Science Foundation(No.2016M601688)
文摘The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian positive definite matrix and parameters s,t>0. Based on the matrix geometry theory, relevant matrix inequality and linear algebra technology, according to the different value ranges of the parameters s,t, the existence intervals of the Hermitian positive definite solution and the necessary conditions for equation solvability are presented, respectively. Comparing the existing correlation results, the proposed upper and lower bounds of the Hermitian positive definite solution are more accurate and applicable.
文摘For the lower bound about the determinant of Hadamard product of A and B, where A is a n × n real positive definite matrix and B is a n × n M-matrix, Jianzhou Liu [SLAM J. Matrix Anal. Appl., 18(2)(1997): 305-311]obtained the estimated inequality as follows det(A o B)≥a11b11 nⅡk=2(bkk detAk/detAk-1+detBk/detBk-1(k-1Ei=1 aikaki/aii))=Ln(A,B),where Ak is kth order sequential principal sub-matrix of A. We establish an improved lower bound of the form Yn(A,B)=a11baa nⅡk=2(bkk detAk/detAk-1+akk detBk/detBk-1-detAdetBk/detak-1detBk-1)≥Ln(A,B).For more weaker and practical lower bound, Liu given thatdet(A o B)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB(nⅡk=2 k-1Ei=1 aikaki/aiiakk)=(L)n(A,B).We further improve it as Yn(A,B)=(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)+max1≤k≤n wn(A,B,k)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)≥(L)n(A,B).