We introduce two new linear differential operators which are invariant with respect to the unitary group SU(n). They constitute analogues of the twistor and the Rarita-Schwinger operator in the orthogonal case. The ...We introduce two new linear differential operators which are invariant with respect to the unitary group SU(n). They constitute analogues of the twistor and the Rarita-Schwinger operator in the orthogonal case. The natural setting for doing this is Hermitian Clifford Analysis. Such operators are constructed by twisting the two versions of the Hermitian Dirac operator 6z_ and 6z_ and then projecting on irreducible modules for the unitary group. We then study some properties of their spaces of nullsolutions and we find a formulation of the Hermitian Rarita-Schwinger operators in terms of Hermitian monogenic polynomials.展开更多
基金sponsored by the relevant grantssupported by the F.W.O. Vlaanderen (Belgium)
文摘We introduce two new linear differential operators which are invariant with respect to the unitary group SU(n). They constitute analogues of the twistor and the Rarita-Schwinger operator in the orthogonal case. The natural setting for doing this is Hermitian Clifford Analysis. Such operators are constructed by twisting the two versions of the Hermitian Dirac operator 6z_ and 6z_ and then projecting on irreducible modules for the unitary group. We then study some properties of their spaces of nullsolutions and we find a formulation of the Hermitian Rarita-Schwinger operators in terms of Hermitian monogenic polynomials.