In this paper, we construct MDS Euclidean self-dual codes which are ex-tended cyclic duadic codes. And we obtain many new MDS Euclidean self-dual codes. We also construct MDS Hermitian self-dual codes from generalized...In this paper, we construct MDS Euclidean self-dual codes which are ex-tended cyclic duadic codes. And we obtain many new MDS Euclidean self-dual codes. We also construct MDS Hermitian self-dual codes from generalized Reed-Solomon codes and constacyclic codes.展开更多
It is a regular way of constructing quantum error-correcting codes via codes with self-orthogonal property, and whether a classical Bose-Chaudhuri-Hocquenghem (BCH) code is self-orthogonal can be determined by its des...It is a regular way of constructing quantum error-correcting codes via codes with self-orthogonal property, and whether a classical Bose-Chaudhuri-Hocquenghem (BCH) code is self-orthogonal can be determined by its designed distance. In this paper, we give the sufficient and necessary condition for arbitrary classical BCH codes with self-orthogonal property through algorithms. We also give a better upper bound of the designed distance of a classical narrow-sense BCH code which contains its Euclidean dual. Besides these, we also give one algorithm to compute the dimension of these codes. The complexity of all algorithms is analyzed. Then the results can be applied to construct a series of quantum BCH codes via the famous CSS constructions.展开更多
Korchmaros and Nagy [Hermitian codes from higher degree places. J Pure Appl Algebra, doi: 10. 1016/j.jpaa.2013.04.002, 2013] computed the Weierstrass gap sequence G(P) of the Hermitian function field Fq2 (H) at a...Korchmaros and Nagy [Hermitian codes from higher degree places. J Pure Appl Algebra, doi: 10. 1016/j.jpaa.2013.04.002, 2013] computed the Weierstrass gap sequence G(P) of the Hermitian function field Fq2 (H) at any place P of degree 3, and obtained an explicit formula of the Matthews-Michel lower bound on the minimum distance in the associated differential Hermitian code CΩ(D, mP) where the divisor D is, as usual, the sum of all but one 1-degree Fq2-rational places of Fq2 (H) and m is a positive integer. For plenty of values of m depending on q, this provided improvements on the designed minimum distance of CΩ(D, mP). Further improvements from G(P) were obtained by Korchmaros and Nagy relying on algebraic geometry. Here slightly weaker improvements are obtained from G(P) with the usual function-field method depending on linear series, Riemann-Roch theorem and Weierstrass semigroups. We also survey the known results on this subject.展开更多
文摘In this paper, we construct MDS Euclidean self-dual codes which are ex-tended cyclic duadic codes. And we obtain many new MDS Euclidean self-dual codes. We also construct MDS Hermitian self-dual codes from generalized Reed-Solomon codes and constacyclic codes.
基金Supported by the National Natural Science Foundation of China (No.60403004)the Outstanding Youth Foundation of China (No.0612000500)
文摘It is a regular way of constructing quantum error-correcting codes via codes with self-orthogonal property, and whether a classical Bose-Chaudhuri-Hocquenghem (BCH) code is self-orthogonal can be determined by its designed distance. In this paper, we give the sufficient and necessary condition for arbitrary classical BCH codes with self-orthogonal property through algorithms. We also give a better upper bound of the designed distance of a classical narrow-sense BCH code which contains its Euclidean dual. Besides these, we also give one algorithm to compute the dimension of these codes. The complexity of all algorithms is analyzed. Then the results can be applied to construct a series of quantum BCH codes via the famous CSS constructions.
基金financially supported by the TAMOP-4.2.1/B-09/1/KONV-2010-0005 project
文摘Korchmaros and Nagy [Hermitian codes from higher degree places. J Pure Appl Algebra, doi: 10. 1016/j.jpaa.2013.04.002, 2013] computed the Weierstrass gap sequence G(P) of the Hermitian function field Fq2 (H) at any place P of degree 3, and obtained an explicit formula of the Matthews-Michel lower bound on the minimum distance in the associated differential Hermitian code CΩ(D, mP) where the divisor D is, as usual, the sum of all but one 1-degree Fq2-rational places of Fq2 (H) and m is a positive integer. For plenty of values of m depending on q, this provided improvements on the designed minimum distance of CΩ(D, mP). Further improvements from G(P) were obtained by Korchmaros and Nagy relying on algebraic geometry. Here slightly weaker improvements are obtained from G(P) with the usual function-field method depending on linear series, Riemann-Roch theorem and Weierstrass semigroups. We also survey the known results on this subject.