Let Q be the quaternion division algebra over real field F, Denote by Hn(Q) the set of all n x n hermitian matrices over Q. We characterize the additive maps from Hn(Q) into Hm(Q) that preserve rank-1 matrices w...Let Q be the quaternion division algebra over real field F, Denote by Hn(Q) the set of all n x n hermitian matrices over Q. We characterize the additive maps from Hn(Q) into Hm(Q) that preserve rank-1 matrices when the rank of the image of In is equal to n. Let QR be the quaternion division algebra over the field of real number R. The additive maps from Hn (QR) into Hm (QR) that preserve rank-1 matrices are also given.展开更多
<span style="line-height:1.5;"><span>In this paper, we consider a constrained low rank approximation problem: </span><img src="Edit_57d85c54-7822-4512-aafc-f0b0295a8f75.png" wi...<span style="line-height:1.5;"><span>In this paper, we consider a constrained low rank approximation problem: </span><img src="Edit_57d85c54-7822-4512-aafc-f0b0295a8f75.png" width="100" height="24" alt="" /></span><span style="line-height:1.5;"><span>, where </span><i><span>E</span></i><span> is a given complex matrix, </span><i><span>p</span></i><span> is a positive integer, and </span></span><span style="line-height:1.5;"></span><span style="line-height:1.5;"><span> is the set of the Hermitian nonnegative-definite least squares solution to the matrix equation </span><img src="Edit_ced08299-d2dc-4dbb-907a-4d8d36d2e87a.png" width="60" height="16" alt="" /></span><span style="line-height:1.5;"><span>. We discuss the range of </span><i><span>p</span></i><span> and derive the corresponding explicit solution expression of the constrained low rank approximation problem by matrix decompositions. And an algorithm for the problem is proposed and the numerical example is given to show its feasibility.展开更多
For A∈CmΧn, if the sum of the elements in each row and the sum of the elements in each column are both equal to 0, then A is called an indeterminate admittance matrix. If A is an indeterminate admit...For A∈CmΧn, if the sum of the elements in each row and the sum of the elements in each column are both equal to 0, then A is called an indeterminate admittance matrix. If A is an indeterminate admittance matrix and a Hermitian matrix, then A is called a Hermitian indeterminate admittance matrix. In this paper, we provide two methods to study the least squares Hermitian indeterminate admittance problem of complex matrix equation (AXB,CXD)=(E,F), and give the explicit expressions of least squares Hermitian indeterminate admittance solution with the least norm in each method. We mainly adopt the Moore-Penrose generalized inverse and Kronecker product in Method I and a matrix-vector product in Method II, respectively.展开更多
In this paper,we introduce matrix-valued multiresolution analysis and orthogonal matrix-valued wavelets.We obtain a necessary and sufficient condition on the existence of orthogonal matrix-valued wavelets by means of ...In this paper,we introduce matrix-valued multiresolution analysis and orthogonal matrix-valued wavelets.We obtain a necessary and sufficient condition on the existence of orthogonal matrix-valued wavelets by means of paraunitary vector filter bank theory.A method for constructing a class of compactly supported orthogonal matrix-valued wavelets is proposed by using multiresolution analysis method and matrix theory.展开更多
文摘Let Q be the quaternion division algebra over real field F, Denote by Hn(Q) the set of all n x n hermitian matrices over Q. We characterize the additive maps from Hn(Q) into Hm(Q) that preserve rank-1 matrices when the rank of the image of In is equal to n. Let QR be the quaternion division algebra over the field of real number R. The additive maps from Hn (QR) into Hm (QR) that preserve rank-1 matrices are also given.
文摘We exploit the theory of reproducing kernels to deduce a matrix inequality for the inverse of the restriction of a positive definite Hermitian matrix.
文摘<span style="line-height:1.5;"><span>In this paper, we consider a constrained low rank approximation problem: </span><img src="Edit_57d85c54-7822-4512-aafc-f0b0295a8f75.png" width="100" height="24" alt="" /></span><span style="line-height:1.5;"><span>, where </span><i><span>E</span></i><span> is a given complex matrix, </span><i><span>p</span></i><span> is a positive integer, and </span></span><span style="line-height:1.5;"></span><span style="line-height:1.5;"><span> is the set of the Hermitian nonnegative-definite least squares solution to the matrix equation </span><img src="Edit_ced08299-d2dc-4dbb-907a-4d8d36d2e87a.png" width="60" height="16" alt="" /></span><span style="line-height:1.5;"><span>. We discuss the range of </span><i><span>p</span></i><span> and derive the corresponding explicit solution expression of the constrained low rank approximation problem by matrix decompositions. And an algorithm for the problem is proposed and the numerical example is given to show its feasibility.
文摘For A∈CmΧn, if the sum of the elements in each row and the sum of the elements in each column are both equal to 0, then A is called an indeterminate admittance matrix. If A is an indeterminate admittance matrix and a Hermitian matrix, then A is called a Hermitian indeterminate admittance matrix. In this paper, we provide two methods to study the least squares Hermitian indeterminate admittance problem of complex matrix equation (AXB,CXD)=(E,F), and give the explicit expressions of least squares Hermitian indeterminate admittance solution with the least norm in each method. We mainly adopt the Moore-Penrose generalized inverse and Kronecker product in Method I and a matrix-vector product in Method II, respectively.
基金Supported by the Natural Science Foundation of Henan(0211044800)
文摘In this paper,we introduce matrix-valued multiresolution analysis and orthogonal matrix-valued wavelets.We obtain a necessary and sufficient condition on the existence of orthogonal matrix-valued wavelets by means of paraunitary vector filter bank theory.A method for constructing a class of compactly supported orthogonal matrix-valued wavelets is proposed by using multiresolution analysis method and matrix theory.