Stimulated raman scattering (SRS) is an effective method for expanding the spectral range of high power lasers, especially in the regime of near IR and middle IR. We report the SRS of high pressure H2 with a multipl...Stimulated raman scattering (SRS) is an effective method for expanding the spectral range of high power lasers, especially in the regime of near IR and middle IR. We report the SRS of high pressure H2 with a multiple-pass cell configuration. The SRS with the multiple-pass cell configuration is found to be very efficient for reduction of threshold of the first Stokes (S1). Due to the coherent SRS (CSRS) process, the multiple-pass cell configuration is more effective for reduction of the threshold for the second Stokes (S2) SRS and for increasing the conversion efficiency of S2. This contributes to the relatively low conversion efficiency of S1 for the multiple-pass cell configuration. Multiple-pass cell SRS is also found to be very effective for improving the beam quality and the stability of S1.展开更多
为了对痕量有害气体(甲烷为例)进行非接触式检测,本文基于可调谐二极管激光吸收光谱(TDLAS)与波长调制光谱(WMS)相结合的检测技术,采用中心波长为7.5μm的量子级联激光器(QCL),设计并研制出高灵敏度电子鼻传感器系统.在室温条件下,通过...为了对痕量有害气体(甲烷为例)进行非接触式检测,本文基于可调谐二极管激光吸收光谱(TDLAS)与波长调制光谱(WMS)相结合的检测技术,采用中心波长为7.5μm的量子级联激光器(QCL),设计并研制出高灵敏度电子鼻传感器系统.在室温条件下,通过调节QCL注入电流,使其发光光谱扫过甲烷(CH4)气体吸收谱线.同时采用紧凑型herriott气室(长度为40 cm,容积为800 m L),使得系统总光程达到16 m.利用该传感器系统,对不同浓度的CH4进行测量,结果显示,测量相对误差小于7%,检测下限为1×10^(-9).同时,研究人员可以通过更换其他激射波长的QCL,实现对其它有害气体的检测.展开更多
Spontaneous combustion of the coal mine goaf is one of the main disasters in the coal mine. The detection technology based on symbolic gas is the main means to realize the spontaneous combustion prediction of the coal...Spontaneous combustion of the coal mine goaf is one of the main disasters in the coal mine. The detection technology based on symbolic gas is the main means to realize the spontaneous combustion prediction of the coal mine goaf, and ethylene gas is an important symbol gas of spontaneous combustion in the coal accelerated oxidation stage. In order to overcome the problem of current coal ethylene detection, the paper presents a mine optical fiber multi-point ethylene concentration sensor based on the tunable diode laser absorption spectroscopy. Based on the experiments and analysis of the near-infrared spectrum of ethylene, the system employed the 1.62 μm (DFB) wavelength fiber coupled distributed feedback laser as the light source. By using the wavelength scanning technique and developing a stable fiber coupled Herriot type long path gas absorption cell, a ppm-level high sensitivity detecting system for the concentration of ethylene gas was realized, which could meet the needs of coal mine fire prevention goaf prediction.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11304311 and 11475177
文摘Stimulated raman scattering (SRS) is an effective method for expanding the spectral range of high power lasers, especially in the regime of near IR and middle IR. We report the SRS of high pressure H2 with a multiple-pass cell configuration. The SRS with the multiple-pass cell configuration is found to be very efficient for reduction of threshold of the first Stokes (S1). Due to the coherent SRS (CSRS) process, the multiple-pass cell configuration is more effective for reduction of the threshold for the second Stokes (S2) SRS and for increasing the conversion efficiency of S2. This contributes to the relatively low conversion efficiency of S1 for the multiple-pass cell configuration. Multiple-pass cell SRS is also found to be very effective for improving the beam quality and the stability of S1.
文摘为了对痕量有害气体(甲烷为例)进行非接触式检测,本文基于可调谐二极管激光吸收光谱(TDLAS)与波长调制光谱(WMS)相结合的检测技术,采用中心波长为7.5μm的量子级联激光器(QCL),设计并研制出高灵敏度电子鼻传感器系统.在室温条件下,通过调节QCL注入电流,使其发光光谱扫过甲烷(CH4)气体吸收谱线.同时采用紧凑型herriott气室(长度为40 cm,容积为800 m L),使得系统总光程达到16 m.利用该传感器系统,对不同浓度的CH4进行测量,结果显示,测量相对误差小于7%,检测下限为1×10^(-9).同时,研究人员可以通过更换其他激射波长的QCL,实现对其它有害气体的检测.
基金This work was supported by the National Natural Science Foundation of China (60977058 & 61475085) and Fundamental Research Funds of Shandong University (2014YQ011).
文摘Spontaneous combustion of the coal mine goaf is one of the main disasters in the coal mine. The detection technology based on symbolic gas is the main means to realize the spontaneous combustion prediction of the coal mine goaf, and ethylene gas is an important symbol gas of spontaneous combustion in the coal accelerated oxidation stage. In order to overcome the problem of current coal ethylene detection, the paper presents a mine optical fiber multi-point ethylene concentration sensor based on the tunable diode laser absorption spectroscopy. Based on the experiments and analysis of the near-infrared spectrum of ethylene, the system employed the 1.62 μm (DFB) wavelength fiber coupled distributed feedback laser as the light source. By using the wavelength scanning technique and developing a stable fiber coupled Herriot type long path gas absorption cell, a ppm-level high sensitivity detecting system for the concentration of ethylene gas was realized, which could meet the needs of coal mine fire prevention goaf prediction.