Intuitionistic hesitant fuzzy set(IHFS)is amixture of two separated notions called intuitionistic fuzzy set(IFS)and hesitant fuzzy set(HFS),as an important technique to cope with uncertain and awkward information in r...Intuitionistic hesitant fuzzy set(IHFS)is amixture of two separated notions called intuitionistic fuzzy set(IFS)and hesitant fuzzy set(HFS),as an important technique to cope with uncertain and awkward information in realistic decision issues.IHFS contains the grades of truth and falsity in the formof the subset of the unit interval.The notion of IHFS was defined by many scholars with different conditions,which contain several weaknesses.Here,keeping in view the problems of already defined IHFSs,we will define IHFS in another way so that it becomes compatible with other existing notions.To examine the interrelationship between any numbers of IHFSs,we combined the notions of power averaging(PA)operators and power geometric(PG)operators with IHFSs to present the idea of intuitionistic hesitant fuzzy PA(IHFPA)operators,intuitionistic hesitant fuzzy PG(IHFPG)operators,intuitionistic hesitant fuzzy power weighted average(IHFPWA)operators,intuitionistic hesitant fuzzy power ordered weighted average(IHFPOWA)operators,intuitionistic hesitant fuzzy power ordered weighted geometric(IHFPOWG)operators,intuitionistic hesitant fuzzy power hybrid average(IHFPHA)operators,intuitionistic hesitant fuzzy power hybrid geometric(IHFPHG)operators and examined as well their fundamental properties.Some special cases of the explored work are also discovered.Additionally,the similarity measures based on IHFSs are presented and their advantages are discussed along examples.Furthermore,we initiated a new approach to multiple attribute decision making(MADM)problem applying suggested operators and a mathematical model is solved to develop an approach and to establish its common sense and adequacy.Advantages,comparative analysis,and graphical representation of the presented work are elaborated to show the reliability and effectiveness of the presented works.展开更多
Intelligent wars can take place not only in the physical domain and information domain but also in the cognitive domain.The cognitive domain will become the key domain to win in the future intelligent war.A Lanchester...Intelligent wars can take place not only in the physical domain and information domain but also in the cognitive domain.The cognitive domain will become the key domain to win in the future intelligent war.A Lanchester equation considering cognitive domain is proposed to fit the development tendency intelligent wars in this paper.One party is considered to obtain the exponential enhancement advantage on combat forces in combat if it can gain an advantage in the cognitive domain over the other party according to the systemic advantage function.The operational effectiveness of the cognitive domain in war is considered to consist of a series of indicators.Hesitant fuzzy sets and linguistic term sets are powerful tools when evaluating indicators,hence the indicators are scored by experts using hesitant fuzzy linguistic terms sets here.A unique hesitant fuzzy hybrid arithmetical averaging operator is used to aggregate the evaluation.展开更多
As a generalization of fuzzy set,hesitant probabilistic fuzzy set and pythagorean triangular fuzzy set have their own unique advantages in describing decision information.As modern socioeconomic decision-making proble...As a generalization of fuzzy set,hesitant probabilistic fuzzy set and pythagorean triangular fuzzy set have their own unique advantages in describing decision information.As modern socioeconomic decision-making problems are becoming more and more complex,it also becomes more and more difficult to appropriately depict decision makers’cognitive information in decision-making process.In order to describe the decision information more comprehensively,we define a pythagorean probabilistic hesitant triangular fuzzy set(PPHTFS)by combining the pythagorean triangular fuzzy set and the probabilistic hesitant fuzzy set.Firstly,the basic operation and scoring function of the pythagorean probabilistic hesitant triangular fuzzy element(PPHTFE)are proposed,and the comparison rule of two PPHTFEs is given.Then,some pythagorean probabilistic hesitant triangular fuzzy aggregation operators are developed,and their properties are also studied.Finally,a multi-attribute decision-making(MADM)model is constructed based on the proposed operators under the pythagorean probabilistic hesitant triangular fuzzy information,and an illustration example is given to demonstrate the practicability and validity of the proposed decision-making method.展开更多
In real life,incomplete information,inaccurate data,and the preferences of decision-makers during qualitative judgment would impact the process of decision-making.As a technical instrument that can successfully handle...In real life,incomplete information,inaccurate data,and the preferences of decision-makers during qualitative judgment would impact the process of decision-making.As a technical instrument that can successfully handle uncertain information,Fermatean fuzzy sets have recently been used to solve the multi-attribute decision-making(MADM)problems.This paper proposes a Fermatean hesitant fuzzy information aggregation method to address the problem of fusion where the membership,non-membership,and priority are considered simultaneously.Combining the Fermatean hesitant fuzzy sets with Heronian Mean operators,this paper proposes the Fermatean hesitant fuzzy Heronian mean(FHFHM)operator and the Fermatean hesitant fuzzyweighted Heronian mean(FHFWHM)operator.Then,considering the priority relationship between attributes is often easier to obtain than the weight of attributes,this paper defines a new Fermatean hesitant fuzzy prioritized Heronian mean operator(FHFPHM),and discusses its elegant properties such as idempotency,boundedness and monotonicity in detail.Later,for problems with unknown weights and the Fermatean hesitant fuzzy information,aMADM approach based on prioritized attributes is proposed,which can effectively depict the correlation between attributes and avoid the influence of subjective factors on the results.Finally,a numerical example of multi-sensor electronic surveillance is applied to verify the feasibility and validity of the method proposed in this paper.展开更多
This paper presents a general framework for the study of relation-based intuitionistic fuzzy rough sets determined by two intuitionistic fuzzy implicators.By employing two intuitionistic fuzzy implicators I and J,I -l...This paper presents a general framework for the study of relation-based intuitionistic fuzzy rough sets determined by two intuitionistic fuzzy implicators.By employing two intuitionistic fuzzy implicators I and J,I -lower and J-upper approximations of intuitionistic fuzzy sets with respect to an intuitionistic fuzzy approximation space are first defined.Properties of(I,J) -intuitionistic fuzzy rough approximation operators are then examined.The connections between special types of intuitionistic fuzzy relations and properties of (I,J)-intuitionistic fuzzy approximation operators are also established.展开更多
In rough set theory, crisp and/or fuzzy binary relations play an important role in both constructive and axiomatic considerations of various generalized rough sets. This paper considers the uniqueness problem of the ...In rough set theory, crisp and/or fuzzy binary relations play an important role in both constructive and axiomatic considerations of various generalized rough sets. This paper considers the uniqueness problem of the (fuzzy) relation in some generalized rough set model. Our results show that by using the axiomatic approach, the (fuzzy) relation determined by (fuzzy) approximation operators is unique in some (fuzzy) double-universe model.展开更多
Residuated lattice is an important non-classical logic algebra, and L-fuzzy rough set based on residuated lattice can describe the information with incompleteness, fuzziness and uncomparativity in information systems....Residuated lattice is an important non-classical logic algebra, and L-fuzzy rough set based on residuated lattice can describe the information with incompleteness, fuzziness and uncomparativity in information systems. In this paper, the representation theorems of L-fuzzy rough sets based on residuated lattice are given. The properties and axiomatic definition of the lower and upper approximarion operators in L-fuzzy rough sets are discussed.展开更多
This research proposes multicriteria decision-making(MCDM)-based real-time Mesenchymal stem cells(MSC)transfusion framework.The testing phase of the methodology denotes the ability to stick to plastic surfaces,the upr...This research proposes multicriteria decision-making(MCDM)-based real-time Mesenchymal stem cells(MSC)transfusion framework.The testing phase of the methodology denotes the ability to stick to plastic surfaces,the upregulation and downregulation of certain surface protein markers,and lastly,the ability to differentiate into various cell types.First,two scenarios of an enhanced dataset based on a medical perspective were created in the development phase to produce varying levels of emergency.Second,for real-timemonitoring ofCOVID-19 patients with different emergency levels(i.e.,mild,moderate,severe,and critical),an automated triage algorithmbased on a formal medical guideline is proposed,taking into account the improvement and deterioration procedures fromone level to the next.For this strategy,Einstein aggregation information under the Pythagorean probabilistic hesitant fuzzy environment(PyPHFE)is developed.Einstein operations on PyPHFE such as Einstein sum,product,scalar multiplication,and their properties are investigated.Then,several Pythagorean probabilistic hesitant fuzzy Einstein aggregation operators,namely the Pythagorean probabilistic hesitant fuzzy weighted average(PyPHFWA)operator,Pythagorean probabilistic hesitant fuzzy Einstein weighted geometric(PyPHFEWG)operator,Pythagorean probabilistic hesitant fuzzy Einstein ordered weighted average(PyPHFEOWA)operator,Pythagorean probabilistic hesitant fuzzy Einstein ordered weighted geometric(PyPHFEOWG)operator,Pythagorean probabilistic hesitant fuzzy Einstein hybrid average(PyPHFEHA)operator and Pythagorean probabilistic hesitant fuzzy Einstein hybrid geometric(PyPHFEHG)operator are investigated.All the above-mentioned operators are helpful in design the algorithm to tackle uncertainty in decision making problems.In last,a numerical case study of decision making is presented to demonstrate the applicability and validity of the proposed technique.Besides,the comparison of the existing and the proposed technique is established to show the effectiveness and validity of the established technique.展开更多
Fuzzy sets have undergone several expansions and generalisations in the literature,including Atanasov’s intuitionistic fuzzy sets,type 2 fuzzy sets,and fuzzy multisets,to name a few.They can be regarded as fuzzy mult...Fuzzy sets have undergone several expansions and generalisations in the literature,including Atanasov’s intuitionistic fuzzy sets,type 2 fuzzy sets,and fuzzy multisets,to name a few.They can be regarded as fuzzy multisets from a formal standpoint;nevertheless,their interpretation differs from the two other approaches to fuzzy multisets that are currently available.Hesitating fuzzy sets(HFS)are very useful if consultants have hesitation in dealing with group decision-making problems between several possible memberships.However,these possible memberships can be not only crisp values in[0,1],but also interval values during a practical evaluation process.Hesitant bipolar valued fuzzy set(HBVFS)is a generalization of HFS.This paper aims to introduce a general framework of multi-attribute group decision-making using social network.We propose two types of decision-making processes:Type-1 decision-making process and Type-2 decision-making process.In the Type-1 decision-making process,the experts’original opinion is proces for thefinal ranking of alternatives.In Type-2 decision making processs,there are two major aspects we consider.First,consistency tests and checking of consensus models are given for detecting that the judgments are logically rational.Otherwise,the framework demands(partial)decision-makers to review their assessments.Second,the coherence and consensus of several HBVFSs are established forfinal ranking of alternatives.The proposed framework is clarified by an example of software packages selection of a university.展开更多
In this paper, we focus on a new approach based on new generalized hesitant fuzzy hybrid weighted aggregation operators, in which the evaluation information provided by decision makers is expressed in hesitant fuzzy e...In this paper, we focus on a new approach based on new generalized hesitant fuzzy hybrid weighted aggregation operators, in which the evaluation information provided by decision makers is expressed in hesitant fuzzy elements (HFEs) and the information about attribute weights and aggregation-associated vector is unknown. More explicitly, some new generalized hesitant fuzzy hybrid weighted aggregation operators are proposed, such as the new generalized hesitant fuzzy hybrid weighted averaging (NGHFHWA) operator and the new generalized hesitant fuzzy hybrid weighted geometric (NGHFHWG) operator. Some desirable properties and the relationships between them are discussed. Then, a new algorithm for hesitant fuzzy multi-attribute decision making (HF-MADM) problems with unknown weight information is introduced. Further, a practical example is used to illustrate the detailed implementation process of the proposed approach. A sensitivity analysis of the decision results is analyzed with different parameters. Finally, comparative studies are given to verify the advantages of our method.展开更多
The Maclaurin symmetric mean(MSM)operator exhibits a desirable characteristic by effectively capturing the correlations among multiple input parameters,and it serves as an extension of certain existing aggregation ope...The Maclaurin symmetric mean(MSM)operator exhibits a desirable characteristic by effectively capturing the correlations among multiple input parameters,and it serves as an extension of certain existing aggregation operators through adjustments to the parameter k.The hesitant q-rung orthopair set(Hq-ROFSs)can serve as an extension of the existing orthopair fuzzy sets,which provides decision makers more freedom in describing their true opinions.The objective of this paper is to present an MSM operator to aggregate hesitant q-rung orthopair numbers and solve the multiple attribute decision making(MADM)problems in which the attribute values take the form of hesitant q-rung orthopair fuzzy sets(H-qROFSs).Firstly,the definition of H-qROFSs and some operational laws of H-qROFSs are proposed.Then we develop a family of hesitant q-rung orthopair fuzzy maclaurin symmetric mean aggregation operators,such as the hesitant q-rung orthopair fuzzy maclaurin symmetric mean(Hq-ROFMSM)operator,the hesitant q-rung orthopair fuzzy weighted maclaurin symmetric mean(Hq-ROFWMSM)operator,the hesitant q-rung orthopair fuzzy dual maclaurin symmetric mean(Hq-ROFDMSM)operator,the hesitant q-rung orthopair fuzzy weighted dual maclaurin symmetric mean(Hq-ROFWDMSM)operator.And the properties and special cases of these proposed operators are studied.Furthermore,an approach based on the Hq-ROFWMSM operator is proposed for multiple attribute decision making problems under hesitant q-rung orthopair fuzzy environment.Finally,a numerical example and comparative analysis is given to illustrate the application of the proposed approach.展开更多
This paper is devoted to the discussion of homomorphic properties of fuzzy rough groups.The fuzzy approximation space was generated by fuzzy normal subgroups and the fuzzy rough approximation operators were discussed ...This paper is devoted to the discussion of homomorphic properties of fuzzy rough groups.The fuzzy approximation space was generated by fuzzy normal subgroups and the fuzzy rough approximation operators were discussed in the frame of fuzzy rough set model.The basic properties of fuzzy rough approximation operators were obtained.展开更多
In this paper,a counterpart of definability is studied in texture spaces.The concept of textural complete field is defined and the relations with textural definable sets are investigated.If a texture is discrete,then ...In this paper,a counterpart of definability is studied in texture spaces.The concept of textural complete field is defined and the relations with textural definable sets are investigated.If a texture is discrete,then textural definability coincides with definability.Using this fact,we obtain some basic results for definability in rough set algebras.Further,we discuss on definability for fuzzy rough sets considering textural fuzzy direlations.展开更多
This paper is devoted to the theories of fuzzy rough ring and its properties. The fuzzy approximation space generated by fuzzy ideals and the fuzzy rough approximation operators were proposed in the frame of fuzzy rou...This paper is devoted to the theories of fuzzy rough ring and its properties. The fuzzy approximation space generated by fuzzy ideals and the fuzzy rough approximation operators were proposed in the frame of fuzzy rough set model. The basic properties of fuzzy rough approximation operators were analyzed and the consistency between approximation operators and the binarv operation of ring was discussed.展开更多
As an generalization of hesitant fuzzy set, interval-valued hesitant fuzzy set and dual hesitant fuzzy set, interval-valued dual hesitant fuzzy set has been proposed and applied in multiple attribute decision making. ...As an generalization of hesitant fuzzy set, interval-valued hesitant fuzzy set and dual hesitant fuzzy set, interval-valued dual hesitant fuzzy set has been proposed and applied in multiple attribute decision making. Hamacher t-norm and t-conorm is an generalization of algebraic and Einstein t-norms and t-conorms. In order to combine interval-valued dual hesitant fuzzy aggregation operators with Hamacher t-norm and t-conorm. We first introduced some new Hamacher operation rules for interval-valued dual hesitant fuzzy elements. Then, several interval-valued dual hesitant fuzzy Hamacher aggregation operators are presented, some desirable properties and their special cases are studied. Further, a new multiple attribute decision making method with these operators is given,and an numerical example is provided to demonstrate that the developed approach is both valid and practical.展开更多
基金supported by“Algebra and Applications Research Unit,Division of Computational Science,Faculty of Science,Prince of Songkla University”.
文摘Intuitionistic hesitant fuzzy set(IHFS)is amixture of two separated notions called intuitionistic fuzzy set(IFS)and hesitant fuzzy set(HFS),as an important technique to cope with uncertain and awkward information in realistic decision issues.IHFS contains the grades of truth and falsity in the formof the subset of the unit interval.The notion of IHFS was defined by many scholars with different conditions,which contain several weaknesses.Here,keeping in view the problems of already defined IHFSs,we will define IHFS in another way so that it becomes compatible with other existing notions.To examine the interrelationship between any numbers of IHFSs,we combined the notions of power averaging(PA)operators and power geometric(PG)operators with IHFSs to present the idea of intuitionistic hesitant fuzzy PA(IHFPA)operators,intuitionistic hesitant fuzzy PG(IHFPG)operators,intuitionistic hesitant fuzzy power weighted average(IHFPWA)operators,intuitionistic hesitant fuzzy power ordered weighted average(IHFPOWA)operators,intuitionistic hesitant fuzzy power ordered weighted geometric(IHFPOWG)operators,intuitionistic hesitant fuzzy power hybrid average(IHFPHA)operators,intuitionistic hesitant fuzzy power hybrid geometric(IHFPHG)operators and examined as well their fundamental properties.Some special cases of the explored work are also discovered.Additionally,the similarity measures based on IHFSs are presented and their advantages are discussed along examples.Furthermore,we initiated a new approach to multiple attribute decision making(MADM)problem applying suggested operators and a mathematical model is solved to develop an approach and to establish its common sense and adequacy.Advantages,comparative analysis,and graphical representation of the presented work are elaborated to show the reliability and effectiveness of the presented works.
基金supported by the National Natural Science Foundation of China (61703426)the National Social Science Foundation of China.
文摘Intelligent wars can take place not only in the physical domain and information domain but also in the cognitive domain.The cognitive domain will become the key domain to win in the future intelligent war.A Lanchester equation considering cognitive domain is proposed to fit the development tendency intelligent wars in this paper.One party is considered to obtain the exponential enhancement advantage on combat forces in combat if it can gain an advantage in the cognitive domain over the other party according to the systemic advantage function.The operational effectiveness of the cognitive domain in war is considered to consist of a series of indicators.Hesitant fuzzy sets and linguistic term sets are powerful tools when evaluating indicators,hence the indicators are scored by experts using hesitant fuzzy linguistic terms sets here.A unique hesitant fuzzy hybrid arithmetical averaging operator is used to aggregate the evaluation.
基金supported by the Key Research and Development Project of Hunan Province(2019SK2331)the Natural Science Foundation of Hunan Province(2019JJ40099,2019JJ40100,2020JJ4339)+2 种基金the Key Scientific Research Project of Hunan Education Department(18A317,19A202)the Scientific Research Fund of Hunan Provincial Education Department(20B272)the Innovation Foundation for Postgraduate of Hunan Institute of Science and Technology(YCX2020A34).
文摘As a generalization of fuzzy set,hesitant probabilistic fuzzy set and pythagorean triangular fuzzy set have their own unique advantages in describing decision information.As modern socioeconomic decision-making problems are becoming more and more complex,it also becomes more and more difficult to appropriately depict decision makers’cognitive information in decision-making process.In order to describe the decision information more comprehensively,we define a pythagorean probabilistic hesitant triangular fuzzy set(PPHTFS)by combining the pythagorean triangular fuzzy set and the probabilistic hesitant fuzzy set.Firstly,the basic operation and scoring function of the pythagorean probabilistic hesitant triangular fuzzy element(PPHTFE)are proposed,and the comparison rule of two PPHTFEs is given.Then,some pythagorean probabilistic hesitant triangular fuzzy aggregation operators are developed,and their properties are also studied.Finally,a multi-attribute decision-making(MADM)model is constructed based on the proposed operators under the pythagorean probabilistic hesitant triangular fuzzy information,and an illustration example is given to demonstrate the practicability and validity of the proposed decision-making method.
文摘In real life,incomplete information,inaccurate data,and the preferences of decision-makers during qualitative judgment would impact the process of decision-making.As a technical instrument that can successfully handle uncertain information,Fermatean fuzzy sets have recently been used to solve the multi-attribute decision-making(MADM)problems.This paper proposes a Fermatean hesitant fuzzy information aggregation method to address the problem of fusion where the membership,non-membership,and priority are considered simultaneously.Combining the Fermatean hesitant fuzzy sets with Heronian Mean operators,this paper proposes the Fermatean hesitant fuzzy Heronian mean(FHFHM)operator and the Fermatean hesitant fuzzyweighted Heronian mean(FHFWHM)operator.Then,considering the priority relationship between attributes is often easier to obtain than the weight of attributes,this paper defines a new Fermatean hesitant fuzzy prioritized Heronian mean operator(FHFPHM),and discusses its elegant properties such as idempotency,boundedness and monotonicity in detail.Later,for problems with unknown weights and the Fermatean hesitant fuzzy information,aMADM approach based on prioritized attributes is proposed,which can effectively depict the correlation between attributes and avoid the influence of subjective factors on the results.Finally,a numerical example of multi-sensor electronic surveillance is applied to verify the feasibility and validity of the method proposed in this paper.
基金supported by grants from the National Natural Science Foundation of China(Nos.61075120, 60673096 and 60773174)the Natural Science Foundation of Zhejiang Province in China(No.Y107262).
文摘This paper presents a general framework for the study of relation-based intuitionistic fuzzy rough sets determined by two intuitionistic fuzzy implicators.By employing two intuitionistic fuzzy implicators I and J,I -lower and J-upper approximations of intuitionistic fuzzy sets with respect to an intuitionistic fuzzy approximation space are first defined.Properties of(I,J) -intuitionistic fuzzy rough approximation operators are then examined.The connections between special types of intuitionistic fuzzy relations and properties of (I,J)-intuitionistic fuzzy approximation operators are also established.
基金Supported by the National Natural Science Foundation of China(11171308,61379018,51305400)
文摘In rough set theory, crisp and/or fuzzy binary relations play an important role in both constructive and axiomatic considerations of various generalized rough sets. This paper considers the uniqueness problem of the (fuzzy) relation in some generalized rough set model. Our results show that by using the axiomatic approach, the (fuzzy) relation determined by (fuzzy) approximation operators is unique in some (fuzzy) double-universe model.
基金The National Natural Science Foundation of China (No60474022)
文摘Residuated lattice is an important non-classical logic algebra, and L-fuzzy rough set based on residuated lattice can describe the information with incompleteness, fuzziness and uncomparativity in information systems. In this paper, the representation theorems of L-fuzzy rough sets based on residuated lattice are given. The properties and axiomatic definition of the lower and upper approximarion operators in L-fuzzy rough sets are discussed.
基金the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4310396DSR32。
文摘This research proposes multicriteria decision-making(MCDM)-based real-time Mesenchymal stem cells(MSC)transfusion framework.The testing phase of the methodology denotes the ability to stick to plastic surfaces,the upregulation and downregulation of certain surface protein markers,and lastly,the ability to differentiate into various cell types.First,two scenarios of an enhanced dataset based on a medical perspective were created in the development phase to produce varying levels of emergency.Second,for real-timemonitoring ofCOVID-19 patients with different emergency levels(i.e.,mild,moderate,severe,and critical),an automated triage algorithmbased on a formal medical guideline is proposed,taking into account the improvement and deterioration procedures fromone level to the next.For this strategy,Einstein aggregation information under the Pythagorean probabilistic hesitant fuzzy environment(PyPHFE)is developed.Einstein operations on PyPHFE such as Einstein sum,product,scalar multiplication,and their properties are investigated.Then,several Pythagorean probabilistic hesitant fuzzy Einstein aggregation operators,namely the Pythagorean probabilistic hesitant fuzzy weighted average(PyPHFWA)operator,Pythagorean probabilistic hesitant fuzzy Einstein weighted geometric(PyPHFEWG)operator,Pythagorean probabilistic hesitant fuzzy Einstein ordered weighted average(PyPHFEOWA)operator,Pythagorean probabilistic hesitant fuzzy Einstein ordered weighted geometric(PyPHFEOWG)operator,Pythagorean probabilistic hesitant fuzzy Einstein hybrid average(PyPHFEHA)operator and Pythagorean probabilistic hesitant fuzzy Einstein hybrid geometric(PyPHFEHG)operator are investigated.All the above-mentioned operators are helpful in design the algorithm to tackle uncertainty in decision making problems.In last,a numerical case study of decision making is presented to demonstrate the applicability and validity of the proposed technique.Besides,the comparison of the existing and the proposed technique is established to show the effectiveness and validity of the established technique.
基金This paper was supported by Wonkwang University in 2022.
文摘Fuzzy sets have undergone several expansions and generalisations in the literature,including Atanasov’s intuitionistic fuzzy sets,type 2 fuzzy sets,and fuzzy multisets,to name a few.They can be regarded as fuzzy multisets from a formal standpoint;nevertheless,their interpretation differs from the two other approaches to fuzzy multisets that are currently available.Hesitating fuzzy sets(HFS)are very useful if consultants have hesitation in dealing with group decision-making problems between several possible memberships.However,these possible memberships can be not only crisp values in[0,1],but also interval values during a practical evaluation process.Hesitant bipolar valued fuzzy set(HBVFS)is a generalization of HFS.This paper aims to introduce a general framework of multi-attribute group decision-making using social network.We propose two types of decision-making processes:Type-1 decision-making process and Type-2 decision-making process.In the Type-1 decision-making process,the experts’original opinion is proces for thefinal ranking of alternatives.In Type-2 decision making processs,there are two major aspects we consider.First,consistency tests and checking of consensus models are given for detecting that the judgments are logically rational.Otherwise,the framework demands(partial)decision-makers to review their assessments.Second,the coherence and consensus of several HBVFSs are established forfinal ranking of alternatives.The proposed framework is clarified by an example of software packages selection of a university.
文摘In this paper, we focus on a new approach based on new generalized hesitant fuzzy hybrid weighted aggregation operators, in which the evaluation information provided by decision makers is expressed in hesitant fuzzy elements (HFEs) and the information about attribute weights and aggregation-associated vector is unknown. More explicitly, some new generalized hesitant fuzzy hybrid weighted aggregation operators are proposed, such as the new generalized hesitant fuzzy hybrid weighted averaging (NGHFHWA) operator and the new generalized hesitant fuzzy hybrid weighted geometric (NGHFHWG) operator. Some desirable properties and the relationships between them are discussed. Then, a new algorithm for hesitant fuzzy multi-attribute decision making (HF-MADM) problems with unknown weight information is introduced. Further, a practical example is used to illustrate the detailed implementation process of the proposed approach. A sensitivity analysis of the decision results is analyzed with different parameters. Finally, comparative studies are given to verify the advantages of our method.
基金Supported by the Key Project of Humanities and Social Research Science Institute of Chongqing Municipal Education Commission(22SKGH432,22SKGH428)2023 Chongqing Education Commission Humanities and Social Sciences Research General Project(23SKGH353)Science and Technology Research Project of Chongqing Education Commission(KJQN202101524)。
文摘The Maclaurin symmetric mean(MSM)operator exhibits a desirable characteristic by effectively capturing the correlations among multiple input parameters,and it serves as an extension of certain existing aggregation operators through adjustments to the parameter k.The hesitant q-rung orthopair set(Hq-ROFSs)can serve as an extension of the existing orthopair fuzzy sets,which provides decision makers more freedom in describing their true opinions.The objective of this paper is to present an MSM operator to aggregate hesitant q-rung orthopair numbers and solve the multiple attribute decision making(MADM)problems in which the attribute values take the form of hesitant q-rung orthopair fuzzy sets(H-qROFSs).Firstly,the definition of H-qROFSs and some operational laws of H-qROFSs are proposed.Then we develop a family of hesitant q-rung orthopair fuzzy maclaurin symmetric mean aggregation operators,such as the hesitant q-rung orthopair fuzzy maclaurin symmetric mean(Hq-ROFMSM)operator,the hesitant q-rung orthopair fuzzy weighted maclaurin symmetric mean(Hq-ROFWMSM)operator,the hesitant q-rung orthopair fuzzy dual maclaurin symmetric mean(Hq-ROFDMSM)operator,the hesitant q-rung orthopair fuzzy weighted dual maclaurin symmetric mean(Hq-ROFWDMSM)operator.And the properties and special cases of these proposed operators are studied.Furthermore,an approach based on the Hq-ROFWMSM operator is proposed for multiple attribute decision making problems under hesitant q-rung orthopair fuzzy environment.Finally,a numerical example and comparative analysis is given to illustrate the application of the proposed approach.
基金Supported by the National Natural Science Foundation of China(60875034)
文摘This paper is devoted to the discussion of homomorphic properties of fuzzy rough groups.The fuzzy approximation space was generated by fuzzy normal subgroups and the fuzzy rough approximation operators were discussed in the frame of fuzzy rough set model.The basic properties of fuzzy rough approximation operators were obtained.
基金supported by the Turkish Scientific and Technological Research Council under the project TBAG 109T683.
文摘In this paper,a counterpart of definability is studied in texture spaces.The concept of textural complete field is defined and the relations with textural definable sets are investigated.If a texture is discrete,then textural definability coincides with definability.Using this fact,we obtain some basic results for definability in rough set algebras.Further,we discuss on definability for fuzzy rough sets considering textural fuzzy direlations.
基金Supported by Soft Science Research Project of Henan Province(122400450212)Supported by Foundation Lead-edge Technologies Research Project of Henan Province(122300410061)
文摘This paper is devoted to the theories of fuzzy rough ring and its properties. The fuzzy approximation space generated by fuzzy ideals and the fuzzy rough approximation operators were proposed in the frame of fuzzy rough set model. The basic properties of fuzzy rough approximation operators were analyzed and the consistency between approximation operators and the binarv operation of ring was discussed.
基金Supported by the Natural Science Foundation of Higher Education of Jiangsu Province(18KJB110024)the High Training Funded for Professional Leaders of Higher Vocational Colleges in Jiangsu Province(2018GRFX038)Science and Technology Research Project of Nantong Shipping College(HYKY/2018A03)
文摘As an generalization of hesitant fuzzy set, interval-valued hesitant fuzzy set and dual hesitant fuzzy set, interval-valued dual hesitant fuzzy set has been proposed and applied in multiple attribute decision making. Hamacher t-norm and t-conorm is an generalization of algebraic and Einstein t-norms and t-conorms. In order to combine interval-valued dual hesitant fuzzy aggregation operators with Hamacher t-norm and t-conorm. We first introduced some new Hamacher operation rules for interval-valued dual hesitant fuzzy elements. Then, several interval-valued dual hesitant fuzzy Hamacher aggregation operators are presented, some desirable properties and their special cases are studied. Further, a new multiple attribute decision making method with these operators is given,and an numerical example is provided to demonstrate that the developed approach is both valid and practical.