期刊文献+
共找到137篇文章
< 1 2 7 >
每页显示 20 50 100
基于图拉普拉斯正则化的PET图像核重建方法
1
作者 盛玉霞 孙坤 柴利 《电子学报》 EI CAS CSCD 北大核心 2024年第1期118-128,共11页
正电子发射断层成像(Positron Emission Tomography,PET)在很多疾病的早期诊断中有重要的作用,PET图像重建的难点之一是如何在保持重建图像中病灶边缘特性的同时具有良好的去噪性能.针对此问题,本文提出了一种结合图拉普拉斯正则化和深... 正电子发射断层成像(Positron Emission Tomography,PET)在很多疾病的早期诊断中有重要的作用,PET图像重建的难点之一是如何在保持重建图像中病灶边缘特性的同时具有良好的去噪性能.针对此问题,本文提出了一种结合图拉普拉斯正则化和深度图像先验的PET图像核重建方法 .设计了改进的U-net神经网络,将PET前向投影模型中的核系数表示为神经网络的输出;通过先验图像构建图拉普拉斯矩阵,重建问题被建模为基于神经网络的带图拉普拉斯正则化项的最大似然函数优化问题.利用优化转移方法导出了收敛的迭代重建算法,每一次迭代包括由核重建方法更新图像和利用神经网络更新核系数两个步骤.仿真和临床实验结果表明,本文提出的方法在不同的指标下都有更好的重建效果,优于已有核重建方法以及最新的基于深度系数先验的重建方法 . 展开更多
关键词 PET 像重建 核方法 深度像先验 拉普拉斯正则
下载PDF
稀疏分解和图拉普拉斯正则化的图像前景背景分割方法
2
作者 谭婷芳 蔡万源 蒋俊正 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第5期979-987,共9页
针对现有图像前景背景分割方法的分割结果存在孤立像素点的问题,利用图信号处理理论和稀疏分解模型,提出新的图像前景背景分割方法.将图像的内在结构建模为图,通过图模型有效地刻画像素之间的内在关联性.将图像的像素强度建模为图信号,... 针对现有图像前景背景分割方法的分割结果存在孤立像素点的问题,利用图信号处理理论和稀疏分解模型,提出新的图像前景背景分割方法.将图像的内在结构建模为图,通过图模型有效地刻画像素之间的内在关联性.将图像的像素强度建模为图信号,其中图像背景作为平滑分量,由一组图傅里叶变换基函数线性表示,叠加在背景上的前景为稀疏分量,前景像素间的连通性可由图拉普拉斯正则化项进行刻画.将图像前景背景分割问题归结为包含稀疏分解模型和图拉普拉斯正则化项的约束优化问题,采用交替方向乘子法对该优化问题进行求解.实验结果表明,与现有的其他方法相比,所提方法具有更好的分割效果. 展开更多
关键词 信号处理 拉普拉斯正则 傅里叶变换基函数 稀疏分解 前景背景分割
下载PDF
基于图正则化多视角函数型矩阵填充的空气质量数据修复
3
作者 高海燕 马文娟 《中国环境科学》 EI CAS CSCD 北大核心 2024年第10期5357-5370,共14页
由于传感器故障、数据传输等原因,收集到的空气质量数据往往面临着稀疏性和不完整性的挑战.提出了一种基于图正则化的多视角函数型矩阵填充方法(GRMFMC),以有效修复和重建空气质量数据的缺失部分.该方法通过引入图正则化策略,充分考虑... 由于传感器故障、数据传输等原因,收集到的空气质量数据往往面临着稀疏性和不完整性的挑战.提出了一种基于图正则化的多视角函数型矩阵填充方法(GRMFMC),以有效修复和重建空气质量数据的缺失部分.该方法通过引入图正则化策略,充分考虑了各污染物内样本信息的高阶邻域关系,减少了信息损失;并且利用Hilbert-Schmidt独立性准则(HSIC)提取不同污染物之间的互补信息,进而提高插补精度;同时,结合函数型数据分析,将不同时间点的空气质量数据视为连续函数,利用其内在的平滑性和相关性实现高精度的数据插值.真实空气质量数据集上的模拟插补和实证应用结果表明,相较于其他典型插补方法,GRMFMC方法的插补误差RMSE、NRMSE分别降低了56%~99%、46%~98%以及51%~99%、40%~98%,显示出更好的插补效果,且在不同缺失率和污染物种类下皆表现稳健,具有良好的泛化能力和实际应用价值. 展开更多
关键词 函数型数据分析 多视角学习 正则 空气质量数据 矩阵填充 数据修复
下载PDF
基于Hessian图正则稀疏NMF的高光谱解混 被引量:2
4
作者 汤辉 孟莎莎 +1 位作者 彭天亮 付康 《计算技术与自动化》 2023年第1期153-159,共7页
基于非负矩阵分解(Nonnegative Matrix Factorization,NMF)的高光谱解混(Hyperspectral Unmixing,HU)方法引起了大家的关注,因为可以将一个非负高光谱图像(Hyperspectral Imagery,HSI)数据矩阵分解为两个非负矩阵的乘积,分别对应于端元... 基于非负矩阵分解(Nonnegative Matrix Factorization,NMF)的高光谱解混(Hyperspectral Unmixing,HU)方法引起了大家的关注,因为可以将一个非负高光谱图像(Hyperspectral Imagery,HSI)数据矩阵分解为两个非负矩阵的乘积,分别对应于端元矩阵和丰度系数矩阵。目前,图约束的NMF算法已经被证明对高光谱解混是有效的,因为它们可以捕获HSI的几何特性。为了挖掘数据在混合过程中的几何结构和稀疏性,提出了一种稀疏的Hessian图正则化NMF(SHGNMF)算法。SHGNMF算法是将丰度矩阵的L1/2正则化器和Hessian图正则化项都添加到每个NMF模型中,同时采用乘法更新规则。最后用模拟数据和真实数据进行实验,验证了所提出的SHGNMF算法相对于其他NMF算法的优越性。 展开更多
关键词 高光谱解混 NMF 稀疏 hessian图正则化 高光谱
下载PDF
面向鲁棒图结构防御的过参数化图神经网络
5
作者 初旭 马辛宇 +4 位作者 林阳 王鑫 王亚沙 朱文武 梅宏 《软件学报》 EI CSCD 北大核心 2024年第8期3878-3896,共19页
图数据在现实应用中普遍存在,图神经网络(GNN)被广泛应用于分析图数据,然而GNN的性能会被图结构上的对抗攻击剧烈影响.应对图结构上的对抗攻击,现有的防御方法一般基于图内聚先验进行低秩图结构重构.但是现有的图结构对抗防御方法无法... 图数据在现实应用中普遍存在,图神经网络(GNN)被广泛应用于分析图数据,然而GNN的性能会被图结构上的对抗攻击剧烈影响.应对图结构上的对抗攻击,现有的防御方法一般基于图内聚先验进行低秩图结构重构.但是现有的图结构对抗防御方法无法自适应秩真值进行低秩图结构重构,同时低秩图结构与下游任务语义存在错配.为了解决以上问题,基于过参数化的隐式正则效应提出过参数化图神经网络(OPGNN)方法,并形式化证明所提方法可以自适应求解低秩图结构,同时证明节点深层表征上的过参数化残差链接可以有效解决语义错配.在真实数据集上的实验结果表明,OPGNN方法相对于现有基线方法具有更好的鲁棒性,同时,OPGNN方法框架在不同的图神经网络骨干上如GCN、APPNP和GPRGNN上显著有效. 展开更多
关键词 节点半监督分类 结构对抗防御 过参数 隐式正则 神经网络
下载PDF
一种低秩和图正则化的协同稀疏高光谱解混方法 被引量:1
6
作者 韩红伟 陈聆 苗加庆 《无线电工程》 北大核心 2023年第4期868-876,共9页
针对经典协同稀疏解混方法中稀疏性表征不足以及丰度矩阵过平滑等问题,提出一种低秩和图正则化的协同稀疏高光谱解混方法。引入加权因子,进一步促进丰度矩阵的稀疏性;引入了图正则化项,获取图像的空间信息,以促进图像的平滑性;在模型中... 针对经典协同稀疏解混方法中稀疏性表征不足以及丰度矩阵过平滑等问题,提出一种低秩和图正则化的协同稀疏高光谱解混方法。引入加权因子,进一步促进丰度矩阵的稀疏性;引入了图正则化项,获取图像的空间信息,以促进图像的平滑性;在模型中增加低秩项,进而挖掘高光谱数据的细节结构,进一步提高解混的精度。利用2个模拟和1个真实高光谱数据进行实验,结果表明,提出方法的解混精度与经典解混方法相比得到显著提升。 展开更多
关键词 高光谱 稀疏 低秩 光谱解混 正则
下载PDF
基于自适应正则化的无偏场景图生成方法
7
作者 李浩晨 曹付元 乔世昌 《计算机科学》 CSCD 北大核心 2023年第10期104-111,共8页
场景图生成旨在给定一张图片,通过目标检测模块得到实体和实体间关系的视觉三元组形式,即主语、关系和宾语,构建语义结构化表示。场景图可应用于图像检索和视觉问答等下游任务。然而,由于数据集中的实体间关系呈长尾分布,因此现有模型... 场景图生成旨在给定一张图片,通过目标检测模块得到实体和实体间关系的视觉三元组形式,即主语、关系和宾语,构建语义结构化表示。场景图可应用于图像检索和视觉问答等下游任务。然而,由于数据集中的实体间关系呈长尾分布,因此现有模型在预测关系时更偏向于粗粒度的头部关系。这样的场景图无法对下游任务起到辅助性作用。以往工作普遍采用再平衡策略,如重采样和重加权的方法,来解决长尾问题。但模型反复学习尾部关系样本,易出现过拟合现象。为了解决上述问题,文中提出了一种自适应正则化无偏场景图生成方法。具体来说,该方法通过设计一个基于先验关系频率的正则项,自适应地调整模型全连接分类器权重,从而实现对模型的平衡预测。所提方法在场景图VG(Visual Genome)数据集上进行了实验,实验结果表明,该方法不仅能防止模型过拟合,也能缓解关系长尾分布问题对场景图生成的负面影响,且最先进的场景图生成方法在结合所提方法后能更有效地改善无偏场景图生成的性能。 展开更多
关键词 场景 长尾分布 重采样 重加权 自适应正则
下载PDF
基于自适应图正则化与联合低秩矩阵分解的数字文化遗产多标签众包答案聚合方法
8
作者 王春雪 徐琳琳 俞天秀 《计算机应用研究》 CSCD 北大核心 2023年第4期1119-1129,共11页
多标签答案聚合问题是通过融合众包收集的大量非专家标注来估计样本的真实标签,由于数字文化遗产数据具有标注成本高、样本类别多、分布不均衡等特点,给数据集多标签答案聚合问题带来了极大挑战。以往的方法主要集中在单标签任务,忽视... 多标签答案聚合问题是通过融合众包收集的大量非专家标注来估计样本的真实标签,由于数字文化遗产数据具有标注成本高、样本类别多、分布不均衡等特点,给数据集多标签答案聚合问题带来了极大挑战。以往的方法主要集中在单标签任务,忽视了多标签任务的标签关联性;大部分多标签聚合方法虽然在一定程度上考虑了标签相关性,但是很敏感地受噪声和离群值的影响。为解决这些问题,提出一种基于自适应图正则化与联合低秩矩阵分解的多标签答案聚合方法AGR-JMF。首先,将标注矩阵分解成纯净标注和噪声标注两部分;对纯净标注采用自适应图正则化方法构建标签间的关联矩阵;最后,利用标注质量、标签关联性、标注人员行为属性相似性等信息指导低秩矩阵分解,以实现多标签答案的聚合。真实数据集和莫高窟壁画数据集上的实验表明,AGR-JMF相较于现有算法在聚合准确率、识别欺诈者等方面具有明显优势。 展开更多
关键词 多标签众包答案聚合 纯净标注数据 自适应正则 低秩矩阵分解
下载PDF
自适应图正则化稀疏编码算法
9
作者 余沁茹 卢桂馥 李华 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第5期75-83,共9页
在GraphSC算法中,拉普拉斯图是预先定义并且固定不变的,并不会参与之后对于字典与稀疏编码的学习过程,而预先定义的拉普拉斯图往往不是最合适的。针对此问题,提出了自适应正则化稀疏编码(graph regularization sparse coding with adapt... 在GraphSC算法中,拉普拉斯图是预先定义并且固定不变的,并不会参与之后对于字典与稀疏编码的学习过程,而预先定义的拉普拉斯图往往不是最合适的。针对此问题,提出了自适应正则化稀疏编码(graph regularization sparse coding with adaptive neighbour,GraphSCAN)算法。该算法使用自适应方法构建合适的局部拉普拉斯图,然后将其加到SC的目标函数中;从而将图的构建和稀疏编码纳入到统一框架中,使得图的构建与稀疏编码的运算同时迭代进行。在CMU人脸数据与COIL20数据上进行的图像聚类实验结果验证了GraphSCAN算法的有效性。 展开更多
关键词 正则 稀疏编码 聚类 自适应聚类
下载PDF
基于Hessian正则化的多视图联合非负矩阵分解算法 被引量:5
10
作者 王超锋 施俊 +1 位作者 吴金杰 朱捷 《计算机工程》 CAS CSCD 北大核心 2017年第11期134-139,共6页
非负矩阵在表征多视图数据时没有考虑数据本身的流型结构,不能有效表达数据内部信息。为此,提出一种基于Hessian正则化的非负矩阵分解算法。利用Hessian泛函的L2模,保持样本局部拓扑结构,并扩展成基于Hessian正则化的联合非负矩阵分解算... 非负矩阵在表征多视图数据时没有考虑数据本身的流型结构,不能有效表达数据内部信息。为此,提出一种基于Hessian正则化的非负矩阵分解算法。利用Hessian泛函的L2模,保持样本局部拓扑结构,并扩展成基于Hessian正则化的联合非负矩阵分解算法,以对多视图数据进行变换。实验结果表明,基于Hessian正则化的非负矩阵分解算法和基于Hessian正则化的联合非负矩阵分解算法的聚类精度以及互信息值都有较大提高,2种算法的数据变化性能都优于传统非负矩阵分解算法。 展开更多
关键词 hessian正则 回归模型 非负矩阵分解 多视数据 聚类
下载PDF
基于火焰边缘感知图正则化的光场超分辨率重建
11
作者 单良 牛玉风 +2 位作者 赵腾飞 洪波 孔明 《中国计量大学学报》 2023年第2期201-207,共7页
目的:研究半透明火焰的光场超分辨率方法,有助于提高基于光场成像技术的火焰三维温度场重建精度。方法:提出火焰边缘感知图正则化方法,在即插即用的交替方向乘子算法框架下,由非透明光场超分辨率的图正则化方法执行火焰光场的超分辨率重... 目的:研究半透明火焰的光场超分辨率方法,有助于提高基于光场成像技术的火焰三维温度场重建精度。方法:提出火焰边缘感知图正则化方法,在即插即用的交替方向乘子算法框架下,由非透明光场超分辨率的图正则化方法执行火焰光场的超分辨率重建,结合RGB和HIS判据检测火焰区域,由域变换递归边缘保持滤波算法对火焰区域进行滤波。该算法可以锐化火焰边缘区域,增加图像纹理高频细节的重建效果。结果:实验结果表明,相比双3次插值、LFBM5D稀疏编码、线性子空间投影、光场卷积神经网络、图正则化等方法,基于火焰边缘感知的图正则化方法可以更好地保留火焰边缘信息,在峰值信噪比评价指标上重建效果最佳,比改进前的图正则化方法最大提高了0.834 dB,在视图一致性上比改进前的图正则化方法最大提高了21.66%。结论:本文提出的方法可以有效提高火焰光场图像的超分辨率重建精度。 展开更多
关键词 火焰光场超分辨率 边缘保持 交替方向乘子法 正则
下载PDF
自动加权多图正则化L_(p)光滑非负矩阵分解算法
12
作者 何雁雁 《现代计算机》 2023年第6期54-59,共6页
针对多图正则化非负矩阵分解忽略了因子矩阵的光滑性以及图正则项参数选取困难的问题,建立了自动加权多图正则化L_(p)光滑非负矩阵分解(AMGSNMF)模型。该模型根据数据之间的几何结构自动地选取图正则项权重,且通过增加因子矩阵的光滑约... 针对多图正则化非负矩阵分解忽略了因子矩阵的光滑性以及图正则项参数选取困难的问题,建立了自动加权多图正则化L_(p)光滑非负矩阵分解(AMGSNMF)模型。该模型根据数据之间的几何结构自动地选取图正则项权重,且通过增加因子矩阵的光滑约束提升解的准确性。使用乘性更新的方法得到所建模型的算法——自动加权多图正则化L_(p)光滑非负矩阵分解算法(AMGSNMF)。将AMGSNMF算法应用于数据聚类,在数据集COIL20和ORL上的实验表明,AMGSNMF算法比四类经典的非负矩阵分解算法聚类精确度提升了0.4%~11.44%,归一化互信息提升了0.53%~3.86%。 展开更多
关键词 非负矩阵分解 自动加权多正则 L_(p)光滑 交替更新 聚类
下载PDF
深度运动图耦合正则化表示的行为识别算法 被引量:8
13
作者 李贤阳 阳建中 +1 位作者 杨竣辉 陆安山 《电子测量与仪器学报》 CSCD 北大核心 2018年第1期119-128,共10页
为了提高图像行为的识别精度,使其能够准确判别行为识别中的微小变化以及遮挡问题,提出了基于深度运动图(depth motion maps,DMM)与正则化协同表示的行为识别算法。首先,将深度图像序列投射到3个正交平面上,得到了3个方向的投射图。对... 为了提高图像行为的识别精度,使其能够准确判别行为识别中的微小变化以及遮挡问题,提出了基于深度运动图(depth motion maps,DMM)与正则化协同表示的行为识别算法。首先,将深度图像序列投射到3个正交平面上,得到了3个方向的投射图。对于不同的投射图,通过测量两个连续映射之间的绝对差值来表示运动能量,并将所有深度图像序列中运动能量进行叠加,获得了3个方向的深度运动图。随后,根据这些投射图,DMM能从多个方向获取更多具有判别力的运动信息。再引入Hough变换(Hough transform,HT)算子,提取DMM中3个方向的HT特征,并其进行归一化融合,获取DMM-HT特征。最后,引入Tikhonov正则化计算系数向量,构建正则化协同表示分类器,对每个位置样本的分类标签完成深度行为分类学习,实现人体行为的准确识别。实验数据表明,与当前行为识别技术相比,算法具有更强的鲁棒性,能完成各种行为的识别,在遮挡、噪声等干扰条件下具有更高的识别精度。所提算法能够较好地适应复杂环境下的人体动作准确识别,在智能家居、视频监测、人机交互等领域具有良好的参考价值。 展开更多
关键词 深度运动 行为识别 运动能量 正则协同表示 HOUGH变换
下载PDF
基于图正则化的半监督非负矩阵分解 被引量:7
14
作者 杜世强 石玉清 +1 位作者 王维兰 马明 《计算机工程与应用》 CSCD 2012年第36期194-200,共7页
提出了一种基于图正则化的半监督非负矩阵分解算法(GSNMF),克服了非负矩阵分解(NMF)、约束非负矩阵分解(CNMF)和图正则化非负矩阵分解(GNMF)方法忽略样本数据的局部几何结构或标签信息不足的缺陷,且NMF、CNMF和GNMF均为GSNMF的特例。也... 提出了一种基于图正则化的半监督非负矩阵分解算法(GSNMF),克服了非负矩阵分解(NMF)、约束非负矩阵分解(CNMF)和图正则化非负矩阵分解(GNMF)方法忽略样本数据的局部几何结构或标签信息不足的缺陷,且NMF、CNMF和GNMF均为GSNMF的特例。也从理论上证明了GSNMF算法的收敛性。该算法对样本数据进行低维非负分解时,在图框架下既保持数据的几何结构,又利用已知样本的标签信息,在进行半监督学习时,同类样本能更好地聚集而类间距离尽可能大。在人脸数据库ORL、FERET和手写体数据库USPS上的仿真结果表明,相对于NMF及其一些改进算法,GSNMF均具有更高的聚类精度。 展开更多
关键词 像聚类 半监督学习 非负矩阵分解 正则
下载PDF
基于图正则化非负矩阵分解的二分网络社区发现算法 被引量:5
15
作者 汪涛 刘阳 席耀一 《电子与信息学报》 EI CSCD 北大核心 2015年第9期2238-2245,共8页
现实世界存在大量二分网络,研究其社区结构有助于从新角度认识和理解异质复杂网络。非负矩阵分解模型能够克服二分结构的限制,有效地挖掘二分网络的潜在结构,但也存在着时间复杂度高、收敛慢等问题。该文提出一种基于图正则化的三重非... 现实世界存在大量二分网络,研究其社区结构有助于从新角度认识和理解异质复杂网络。非负矩阵分解模型能够克服二分结构的限制,有效地挖掘二分网络的潜在结构,但也存在着时间复杂度高、收敛慢等问题。该文提出一种基于图正则化的三重非负矩阵分解(NMTF)算法应用于二分网络社区发现,通过图正则化将用户子空间和目标子空间的内部连接关系作为约束项引入到三重非负矩阵分解模型中;同时将NMTF分解为两个最小化近似误差的子问题,并给出了乘性迭代算法以交替更新因子矩阵,从而简化矩阵分解迭代,加快收敛速度。实验和分析证明:对于计算机生成网络和真实网络,该文提出的社区划分方法均表现出较高的准确率和稳定性,能够快速准确地挖掘二分网络的社区结构。 展开更多
关键词 二分网络 社区发现 正则 非负矩阵分解
下载PDF
一种稀疏约束的图正则化非负矩阵光谱解混方法 被引量:4
16
作者 甘玉泉 刘伟华 +3 位作者 冯向朋 于涛 胡炳樑 汶德胜 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第4期1118-1127,共10页
由于受到高光谱遥感图像传感器平台的限制,图像的空间分辨率受到一定影响,这导致高光谱遥感图像的像元通常是多种地物的混合,也叫做混合像元。混合像元的存在制约了高光谱遥感图像的准确分析和应用领域。采用高光谱解混技术可将混合像... 由于受到高光谱遥感图像传感器平台的限制,图像的空间分辨率受到一定影响,这导致高光谱遥感图像的像元通常是多种地物的混合,也叫做混合像元。混合像元的存在制约了高光谱遥感图像的准确分析和应用领域。采用高光谱解混技术可将混合像元分解为纯净的物质光谱(Endmember,端元)和每种物质光谱所对应的混合比例(Abundance,丰度),为获取更多更精细的光谱提供了可能。这对高精度的地物分类识别、目标检测和定量遥感分析等研究领域具有重要的意义。因此,解混技术成为高光谱遥感图像领域的一个研究热点。基于线性光谱混合模型(linear spectral mixing model, LMM),提出了一种端元丰度联合稀疏约束的图正则化非负矩阵分解(endmember and abundance sparse constrained graph regularized nonnegative matrix factorization, EAGLNMF)算法。该算法通过研究基于非负矩阵分解(nonnegative matrix factorization, NMF)的方法,结合图正则化理论来考虑高光谱数据内部的几何结构,将端元光谱稀疏约束和丰度稀疏约束应用于其中,从而能够对高光谱数据的内部流形结构进行更为有效的表达。首先,构造了EAGLNMF算法的损失函数,采用VCA-FCLS方法进行初始化,然后,设定相关参数,包括图正则化权重矩阵参数、端元光谱稀疏约束因子和丰度矩阵稀疏约束因子,最后,通过推导得到了端元矩阵与丰度矩阵的迭代公式,并且设置了迭代停止条件。该方法不受图像中是否有纯像元的限制。实际上,在现行高光谱遥感传感器平台情况下,高光谱遥感图像中几乎不存在纯像元,因此, EAGLNMF方法为高光谱遥感图像的实际应用提供了一种思路。采用合成的高光谱数据,构造了4个实验来分析该方法的可行性和有效性,实验将该算法与VCA-FCLS,标准NMF及GLNMF等经典的解混算法进行比较,通过光谱角距离(spectral angle distance, SAD)和丰度角距离(abundance angle distance, AAD)这两个度量标准来进行比较。实验1是总体分析实验。在固定的信噪比和固定端元数目的情况下,用以上三种经典方法与EAGLNMF同时进行解混。实验2是SNR影响分析实验。在固定端元数目和不同信噪比的情况下,用这四种方法进行解混。实验3端元数目分析实验。在固定信噪比和不同端元数目的情况下,用四种方法进行解混,并且将结果进行对比。实验结果发现提出的EAGLNMF方法在提取端元精度和估计丰度精度上都更为准确。同时,实验4是稀疏因子分析实验。对端元稀疏约束和丰度稀疏约束之间的影响因子进行分析,实验结果表明引入的端元稀疏约束对于解混结果也具有较好的影响,并且端元稀疏约束和丰度稀疏约束之间的影响因子也对解混结果具有一定影响。最后,将该算法应用于AVIRIS所采集的真实高光谱图像数据,将其解混结果与美国地质勘探局光谱库中光谱进行匹配对比,其提取的平均端元精度相比于其他三种方法要稍好。 展开更多
关键词 高光谱 正则 稀疏约束 非负矩阵分解 光谱解混
下载PDF
基于图正则化与非负组稀疏的自动图像标注 被引量:4
17
作者 钱智明 钟平 王润生 《电子与信息学报》 EI CSCD 北大核心 2015年第4期784-790,共7页
设计一个稳健的自动图像标注系统的重要环节是提取能够有效描述图像语义的视觉特征。由于颜色、纹理和形状等异构视觉特征在表示特定图像语义时所起作用的重要程度不同且同一类特征之间具有一定的相关性,该文提出了一种图正则化约束下... 设计一个稳健的自动图像标注系统的重要环节是提取能够有效描述图像语义的视觉特征。由于颜色、纹理和形状等异构视觉特征在表示特定图像语义时所起作用的重要程度不同且同一类特征之间具有一定的相关性,该文提出了一种图正则化约束下的非负组稀疏(Graph Regularized Non-negative Group Sparsity,GRNGS)模型来实现图像标注,并通过一种非负矩阵分解方法来计算其模型参数。该模型结合了图正则化与2,1l-范数约束,使得标注过程中所选的组群特征能体现一定的视觉相似性和语义相关性。在Corel5K和ESP Game等图像数据集上的实验结果表明:相较于一些最新的图像标注模型,GRNGS模型的鲁棒性更强,标注结果更精确。 展开更多
关键词 像标注 正则 组稀疏 非负矩阵分解
下载PDF
Hessian正则化的低秩矩阵分解算法 被引量:3
18
作者 卢桂馥 万鸣华 《小型微型计算机系统》 CSCD 北大核心 2016年第10期2296-2299,共4页
流形正则化低秩矩阵分解(Manifold Regularized Low-rank Matrix Factorization,MRLMF)算法是一种最近提出的能考虑样本间流形结构的矩阵分解算法.MRLMF采用Laplacian图来表示样本的流形结构,但是,最近研究表明,由于Laplacian图的零空... 流形正则化低秩矩阵分解(Manifold Regularized Low-rank Matrix Factorization,MRLMF)算法是一种最近提出的能考虑样本间流形结构的矩阵分解算法.MRLMF采用Laplacian图来表示样本的流形结构,但是,最近研究表明,由于Laplacian图的零空间中的测地线函数为常数,使得其往往不能较好的保持样本间的局部拓扑结构.为了解决这一问题,提出一种Hessian正则化的低秩矩阵分解算法(Hessian Regularized Low-rank Matrix Factorization,HRLMF).HRLMF利用二阶Hessian能来保持样本的局部流形结构,而Hessian能可以使测地线函数随距离变化,从而使得其保持样本局部拓扑结构的能力更强.此外,也给出了一种求解HRLMF的高效算法.在实际数据库上的实验表明,MRLMF算法比现有的算法有着更好的性能. 展开更多
关键词 低秩矩阵分解 流形正则 hessian 奇异值分解
下载PDF
基于图正则化的受限非负矩阵分解算法及在图像表示中的应用 被引量:6
19
作者 舒振球 赵春霞 《模式识别与人工智能》 EI CSCD 北大核心 2013年第3期300-306,共7页
非负矩阵分解(NMF)是一种非常有效的图像表示方法,已被广泛应用到模式识别领域.针对NMF算法是无监督学习算法,无法同时考虑样本类别信息和固有几何结构信息的缺点,提出一种基于图正则化的受限非负矩阵分解(GRCNMF)的算法.该算法利用硬... 非负矩阵分解(NMF)是一种非常有效的图像表示方法,已被广泛应用到模式识别领域.针对NMF算法是无监督学习算法,无法同时考虑样本类别信息和固有几何结构信息的缺点,提出一种基于图正则化的受限非负矩阵分解(GRCNMF)的算法.该算法利用硬约束保持样本的类别信息,增强算法的鉴别能力,同时还利用近邻图来保持样本间固有的几何结构.通过在COIL20和ORL图像库中的聚类实验结果表明GRCNMF优于其它几种算法,说明GRCNMF的有效性. 展开更多
关键词 非负矩阵分解(NMF) 受限 正则 几何结构 聚类
下载PDF
超声逆散射图象重建问题中截断奇异值分解正则化方法研究 被引量:8
20
作者 刘超 汪元美 《中国图象图形学报(A辑)》 CSCD 北大核心 2003年第10期1146-1152,共7页
为解决超声逆散射成像问题中的非线性性,人们需要反复地求解前向散射方程和逆散射方程,以达到对全场和未知函数的精确近似,从而根据这一未知函数的精确近似,较好地重建物体内部的断层图象.前向散射方程是一个适定的方程组,可以采用通常... 为解决超声逆散射成像问题中的非线性性,人们需要反复地求解前向散射方程和逆散射方程,以达到对全场和未知函数的精确近似,从而根据这一未知函数的精确近似,较好地重建物体内部的断层图象.前向散射方程是一个适定的方程组,可以采用通常的方法进行求解;而逆散射方程则是一个不适定性的方程组,即使数据中存在一个微小的误差,都可能引起解的较大偏离,因此,对这个不适定方程组的求解问题是整个迭代算法成功的关键.而在不适定性问题的求解过程中,正则化参数的选取又是非常重要的.求解不适定性方程的传统方法是Tikhonov正则化方法,这一方法的实质是在传统最小二乘方法上加上一个小于1的滤波因子,对于超声逆散射成像问题来说,效果并不太好.本文将截断奇异值分解正则化方法应用于逆散射方程的求解问题中,并对正则化参数的选取方法进行修正.数值仿真结果表明,这一方法配合适当的正则化参数选取,可以更好地滤除噪声,提高重建图象的质量与可信度,同时还可以减小迭代过程中的计算量. 展开更多
关键词 超声逆散射 不适定性方程 滤波因子 奇异值分解 正则 象质量 象重建
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部