研究一类退化Hessian商方程Neumann问题,通过选取恰当的辅助函数,利用极大值原理和基本对称函数的性质,在条件f1/k−l∈C1(Ω¯×ℝn)下得到该方程当f依赖于x,Du时解的全局梯度估计。In this paper, degenerate Hessian quotient ...研究一类退化Hessian商方程Neumann问题,通过选取恰当的辅助函数,利用极大值原理和基本对称函数的性质,在条件f1/k−l∈C1(Ω¯×ℝn)下得到该方程当f依赖于x,Du时解的全局梯度估计。In this paper, degenerate Hessian quotient equations with Neumann problem has studied. By choosing suitable auxiliary functions, using the maximum principle and the properties of basic symmetric functions, with the f1/k−l∈C1(Ω¯×ℝn)condition, the global gradient estimation for the admissible solution of the equations with dependent on x and Du has obtained.展开更多
基金Foundation item: The project is partially supported by National Natural Science Foundation of China(No. 10371011) Doctoral Program Foundation of Institution of Higher Education(No. 1999002705) and Scientific Research Foundation for Returned Overseas Ch
文摘研究一类退化Hessian商方程Neumann问题,通过选取恰当的辅助函数,利用极大值原理和基本对称函数的性质,在条件f1/k−l∈C1(Ω¯×ℝn)下得到该方程当f依赖于x,Du时解的全局梯度估计。In this paper, degenerate Hessian quotient equations with Neumann problem has studied. By choosing suitable auxiliary functions, using the maximum principle and the properties of basic symmetric functions, with the f1/k−l∈C1(Ω¯×ℝn)condition, the global gradient estimation for the admissible solution of the equations with dependent on x and Du has obtained.
基金The project is partially supported by the National Natural Science Foundation(No.10071005),the Specialized Research Fund for the Doctoral Program of Higher Education(No.1999002705)and the Scientific Research Foundation for the Returned Overseas Chinese S