Due to the limited uplink capability in heterogeneousnetworks (HetNets), the decoupled uplinkand downlink access (DUDA) mode has recently beenproposed to improve the uplink performance. In thispaper, the random discon...Due to the limited uplink capability in heterogeneousnetworks (HetNets), the decoupled uplinkand downlink access (DUDA) mode has recently beenproposed to improve the uplink performance. In thispaper, the random discontinuous transmission (DTX)at user equipment (UE) is adopted to reduce the interferencecorrelation across different time slots. By utilizingstochastic geometry, we analytically derive themean local delay and energy efficiency (EE) of an uplinkHetNet with UE random DTX scheme under theDUDA mode. These expressions are further approximatedas closed forms under reasonable assumptions.Our results reveal that under the DUDA mode, there isan optimal EE with respect to mute probability underthe finite local delay constraint. In addition, with thesame finite mean local delay as under the coupled uplinkand downlink access (CUDA) mode, the HetNetsunder the DUDA mode can achieve a higher EE witha lower mute probability.展开更多
Due to the unprecedented rate of transformation in thefield of wireless communication industry,there is a need to prioritise the coverage,network power and throughput as preconditions.In Heterogeneous Networks(HetNets...Due to the unprecedented rate of transformation in thefield of wireless communication industry,there is a need to prioritise the coverage,network power and throughput as preconditions.In Heterogeneous Networks(HetNets)the low power node inclusion like Femto and Pico cells creates a network of Multi-Tier(M-Tier)which is regarded as the most significant strategy for enhancing the coverage,throughput,4G Long Term Evolution(LTE)ability.This work mainly focuses on M-Tier 3D Heterogeneous Networks Energy Efficiency(EE)based Carrier Aggregation(CA)scheme for streaming real-time huge data like images.Atfirst,M-Tier 3D HetNets scheme was made for investigating Signal to Noise Interference Ratio(SNIR)on assessing the collective Pico-tier and Femto-tier interference.Next,the scheme of channel allocation is scrutinised so as to esti-mate throughput from the multiple tiers.Additionally,with the use of CA technique,the problem of energy efficiency for M-Tier 3D Heterogeneous Network(HetNet)in relation to energy metrics and throughput was evaluated with the use of LTE and Wireless Fidelity(Wi-Fi)coexistence.The simulation is carried out in a MATLAB setting,and the outcomes reveal a huge impact on EE.The simulation is carried in terms of EE,transmission time,throughput,packet success rate,convergence probability,and coverage region.The analysis from simu-lation shows that on improving the output of the device,interference among small cell base stations is reduced on increasing EE.The outcomes attained aid in the effective creation of M-Tier 3D HetNets for enhancing EE by employing Multi-Stream Carrier Aggregation(MSCA)in HetNets.展开更多
Heterogeneous networks (HetNets) composed of overlapped cells with different sizes are expected to improve the transmission performance of data service significantly. User equipments (UEs) in the overlapped area o...Heterogeneous networks (HetNets) composed of overlapped cells with different sizes are expected to improve the transmission performance of data service significantly. User equipments (UEs) in the overlapped area of multiple cells might be able to access various base stations (BSs) of the cells, resulting in various transmission performances due to cell heterogeneity. Hence, designing optimal cell selection scheme is of particular importance for it may affect user quality of service (QoS) and network performance significantly. In this paper, we jointly consider cell selection and transmit power allocation problem in a HetNet consisting of multiple cells. For a single UE case, we formulate the energy efficiency of the UE, and propose an energy efficient optimization scheme which selects the optimal cell corresponding to the maximum energy efficiency of the UE. The problem is then extended to multiple UEs case. To achieve joint performance optimization of all the UEs, we formulate an optimization problem with the objective of maximizing the sum energy efficiency of UEs subject to QoS and power constraints. The formulated nonlinear fractional optimization problem is equivalently transformed into two subproblems, i.e., power allocation subproblem of each UE-eell pair, and cell selection subproblem of UEs. The two subproblems are solved respectively through applying Lagrange dual method and Kuhn-Munkres (K- M) algorithm. Numerical results demonstrate the efficiency of the proposed algorithm.展开更多
LTE heterogeneous networks (HetNets) is becoming a popular topic since it was first developed in 3GPP Release 10. HetNets has the advantage to assemble various cell networks and enhance users’ Quality of Service (QoS...LTE heterogeneous networks (HetNets) is becoming a popular topic since it was first developed in 3GPP Release 10. HetNets has the advantage to assemble various cell networks and enhance users’ Quality of Service (QoS) within the system. However, its development is still constrained by two main issues: 1) Load imbalance caused by different transmission powers for various tiers, and 2) The unbalanced transmission power may also increase unnecessary handover rate. In order to solve the first issue, Cell range expansion (CRE) can be applied in the system, which will benefit lower-tier cell during user association phase;CRE, Hysteresis Margin (HM) and Time-to-Trigger (TTT) will be utilized to bound UE within lower tier network of HetNets and therefore solve the second issue. On the other hand, the relationship of these parameters may be complicated and even reduce QoS if they are chosen incorrectly. This paper will evaluate the advantage and disadvantage of all three parameters and propose a Markov Chain Process (MCP) based method to find optimal HM, CRE and TTT values. And then, the simulation is taken and the optimal combination for our scenario is obtained to be 1 dB, 6 dB and 60 ms respectively. First contribution of this paper is to map the HetNets handover process into MCP and all the phases of handover can be calculated and analysed in probability way, so that further prediction and simulation can be realised. Second contribution is to establish a mathematical method to model the relationship of HM, CRE and TTT in HetNets, therefore the coordination of these three important parameters is achieved to obtain system optimization.展开更多
A new enhanced inter-cell interference coordination (elCIC) is adopted for managing almost blank sub-frame (ABS),which jointly exploits the time, frequency and power dimensions to improve the resource utilization....A new enhanced inter-cell interference coordination (elCIC) is adopted for managing almost blank sub-frame (ABS),which jointly exploits the time, frequency and power dimensions to improve the resource utilization. In particular, a non-uniform two tier heterogeneous network ( HetNet) is considered, where the pico cells are located close to the macro cell and the number of users in each pico cell is different. To alleviate the interference caused by the co-channeldeployment,the macro cells employ low power ABS (LP- ABS), and the resource blocks (RBs) are divided into twoparts during an ABS. One is exclusively reserved for macro cell users ad the other is reserved for pico cell users. Themacro cells are allowed to use different percentages of RBs and different powers for their own transmission during the LP- ABS. The user association,resource allocation,ABS proportion,the frequency band partition parameter and the transmission power of macro cells are considered, aiming at maximizing the proportional fairness utility of the system. An iterative algorithm is also proposed and simulation results demonstrate that the proposed algorithm can improve both the system throughput and user fairness compared with the existing schemes.展开更多
Most existing handover decision system (HDS) designs are monolithic, resulting in high computational cost and unbalance of overall network. A novel modular handover algorithm with a comprehensive load index for the ...Most existing handover decision system (HDS) designs are monolithic, resulting in high computational cost and unbalance of overall network. A novel modular handover algorithm with a comprehensive load index for the 5th generation (5G) heterogeneous networks (HetNets) is proposed. In this paper, the handover parameters, serving as the basis for handover, are classified into network's quality of service (QoS) module, user preference (UP) module and degree of satisfaction (DS) module according to the new modular HDS design. To optimize switching process, the comprehensive network load index is deduced by using triangle module fusion operator. With respect to the existing handover algorithm, the simulation results indicate that the proposed algorithm can reduce the handover frequency and maintain user satisfaction at a higher level. Meanwhile, due to its block calculation, it can bring about 1.4 s execution time improvement.展开更多
Cell-free Wireless Heterogeneous Networks(HetNets)have emerged as a technological alternative for conventional cellular networks.In this paper,we study the spatially correlative caching strategy,the energy analysis,an...Cell-free Wireless Heterogeneous Networks(HetNets)have emerged as a technological alternative for conventional cellular networks.In this paper,we study the spatially correlative caching strategy,the energy analysis,and the impact of parameter β on the total energy cost of the cell-free wireless HetNets with Access Points distributed by Beta Ginibre Point Process(β-GPP).We derive the approximate expression of Successful Delivery Probability(SDP)based on the Signal-to-Interference-plus-Noise Ratio coverage model.From both analytical and simulation results,it is shown that the proposed caching model based on β-GPP placement,which jointly takes into account path loss,fading,and interference,can closely simulate the caching performance of the cell-free HetNets in terms of SDP.By guaranteeing the outage probability constraints,the analytical expression of the uplink energy cost is also derived.Another conclusion is that with AP locations modeled by β-GPP,the power consumption is not sensitive to β,but is sensitive to the dimension of the kernel function;hence β is less restrictive,and only the truncation of the Ginibre kernel has to be appropriately modified.These findings are new compared with the existing literature where the nodes are commonly assumed to be of Poisson Point Process,Matern Hard-Core Process,or Poisson Cluster Process deployment in cell-free systems.展开更多
Full-duplex(FD)has been recognized as a promising technology for future 5G networks to improve the spectrum efficiency.However,the biggest practical impediments of realizing full-duplex communications are the presence...Full-duplex(FD)has been recognized as a promising technology for future 5G networks to improve the spectrum efficiency.However,the biggest practical impediments of realizing full-duplex communications are the presence of self-interference,especially in complex cellular networks.With the current development of self-interference cancellation techniques,full-duplex has been considered to be more suitable for device-to-device(D2D)and small cell communications which have small transmission range and low transmit power.In this paper,we consider the full-duplex D2D communications in multi-tier wireless networks and present an analytical model which jointly considers mode selection,resource allocation,and power control.Specifically,we consider a distance based mode selection scheme.The performance analysis of different D2D communications modes are performed based on stochastic geometry,and tractable analytical solutions are obtained.Then we investigate the optimal resource partitions between dedicated D2D mode and cellular mode.Numerical results validate the theoretical anlaysis and indicate that with appropriate proportions of users operated in different transmission modes and optimal partitioning of spectrum,the performance gain of FD-D2D communication can be achieved.展开更多
Heterogeneous Networks(HetNets)and cell densification represent promising solutions for the surging data traffic demand in wireless networks.In dense HetNets,user traffic is steered toward the Low-Power Node(LPN)when ...Heterogeneous Networks(HetNets)and cell densification represent promising solutions for the surging data traffic demand in wireless networks.In dense HetNets,user traffic is steered toward the Low-Power Node(LPN)when possible to enhance the user throughput and system capacity by increasing the area spectral efficiency.However,because of the transmit power differences in different tiers of HetNets and irregular service demand,a load imbalance typically exists among different serving nodes.To offload more traffic to LPNs and coordinate the Inter-Cell Interference(ICI),Third-Generation Partnership Project(3GPP)has facilitated the development of the Cell Range Expansion(CRE),enhanced Inter-Cell Interference Coordination(eICIC)and Further enhanced ICIC(FeICIC).In this paper,we develop a cell clustering-based load-aware offsetting and an adaptive Low-Power Subframe(LPS)approach.Our solution allows the separation of User Association(UA)functions at the User Equipment(UE)and network server such that users can make a simple cell-selection decision similar to that in the maximum Received Signal Strength(max-RSS)based UA scheme,where the network server computes the load-aware offsetting and required LPS periods based on the load conditions of the system.The proposed solution is evaluated using system-level simulations wherein the results correspond to performance changes in different service regions.Results show that our method effectively solves the offloading and interference coordination problems in dense HetNets.展开更多
The Internet of things(IoT) as an important application of future communication networks puts a high premium on delay issues. Thus when Io T applications meet heterogeneous networks(HetNets) where macro cells are over...The Internet of things(IoT) as an important application of future communication networks puts a high premium on delay issues. Thus when Io T applications meet heterogeneous networks(HetNets) where macro cells are overlaid with small cells, some traditional problems need rethinking. In this paper, we investigate the delay-addressed association problem in two-tier Het Nets considering different backhaul technologies. Specifically, millimeter wave and fiber links are used to provide high-capacity backhaul for small cells. We first formulate the user association problem to minimize the total delay which depends on the probability of successful transmission, the number of user terminals(UTs), and the number of base stations(BSs). And then two algorithms for active mode and mixed mode are proposed to minimize the network delay. Simulation results show that algorithms based on mutual selection between UTs and BSs have better performance than those based on distance. And algorithms for mixed modes have less delay than those for active mode when the number of BSs is large enough, compared to the number of UTs.展开更多
We investigate the optimal joint power allocation in Heterogeneous Networks (HetNets) to maximise its capacity. Consider- ing frequency reuse in the network, we study two power-constraint cases, i.e., per-cell po- w...We investigate the optimal joint power allocation in Heterogeneous Networks (HetNets) to maximise its capacity. Consider- ing frequency reuse in the network, we study two power-constraint cases, i.e., per-cell po- wer constraint case and per-tier power con- straint case. We formulate the capacity maxi- mization problem by allowing each subcarrier of Marco eNodeB (MeNB) to be shared by users from multiple Picos. We mathematically demonstrate that the optimal power allocation in the per-cell power constraint case has a re- markably simple nature: each Pico transmits to its user with maximum power, while MeNB either selects only one user to jointly transmit with maximum power or does not transmit to any user. In the per-tier power constraint case, the difference is that the power allocation be- tween two Picos takes the form of water-fill- ing. Numerical results verify that our proposed schemes outperform the conventional interfe- rence coordination schemes.展开更多
A Large-Scale Heterogeneous Network(LS-HetNet)integrates different networks into one uniform network system to provide seamless one-world network coverage.In LS-HetNet,various devices use different technologies to acc...A Large-Scale Heterogeneous Network(LS-HetNet)integrates different networks into one uniform network system to provide seamless one-world network coverage.In LS-HetNet,various devices use different technologies to access heterogeneous networks and generate a large amount of data.For dealing with a large number of access requirements,these data are usually stored in the HetNet Domain Management Server(HDMS)of the current domain,and HDMS uses a centralized Authentication/Authorization/Auditing(AAA)scheme to protect the data.However,this centralized method easily causes the data to be modified or disclosed.To address this issue,we propose a blockchain-empowered AAA scheme for accessing data of LS-HetNet.Firstly,the account address of the blockchain is used as the identity authentication,and the access control permission of data is redesigned and stored on the blockchain,then processes of AAA are redefined.Finally,the experimental model on Ethereum private chain is built,and the results show that the scheme is not only secure but also decentral,without tampering and trustworthiness.展开更多
基金supported in part by the National Key R&D Program of China under Grant 2021YFB 2900304the Shenzhen Science and Technology Program under Grants KQTD20190929172545139 and ZDSYS20210623091808025.
文摘Due to the limited uplink capability in heterogeneousnetworks (HetNets), the decoupled uplinkand downlink access (DUDA) mode has recently beenproposed to improve the uplink performance. In thispaper, the random discontinuous transmission (DTX)at user equipment (UE) is adopted to reduce the interferencecorrelation across different time slots. By utilizingstochastic geometry, we analytically derive themean local delay and energy efficiency (EE) of an uplinkHetNet with UE random DTX scheme under theDUDA mode. These expressions are further approximatedas closed forms under reasonable assumptions.Our results reveal that under the DUDA mode, there isan optimal EE with respect to mute probability underthe finite local delay constraint. In addition, with thesame finite mean local delay as under the coupled uplinkand downlink access (CUDA) mode, the HetNetsunder the DUDA mode can achieve a higher EE witha lower mute probability.
文摘Due to the unprecedented rate of transformation in thefield of wireless communication industry,there is a need to prioritise the coverage,network power and throughput as preconditions.In Heterogeneous Networks(HetNets)the low power node inclusion like Femto and Pico cells creates a network of Multi-Tier(M-Tier)which is regarded as the most significant strategy for enhancing the coverage,throughput,4G Long Term Evolution(LTE)ability.This work mainly focuses on M-Tier 3D Heterogeneous Networks Energy Efficiency(EE)based Carrier Aggregation(CA)scheme for streaming real-time huge data like images.Atfirst,M-Tier 3D HetNets scheme was made for investigating Signal to Noise Interference Ratio(SNIR)on assessing the collective Pico-tier and Femto-tier interference.Next,the scheme of channel allocation is scrutinised so as to esti-mate throughput from the multiple tiers.Additionally,with the use of CA technique,the problem of energy efficiency for M-Tier 3D Heterogeneous Network(HetNet)in relation to energy metrics and throughput was evaluated with the use of LTE and Wireless Fidelity(Wi-Fi)coexistence.The simulation is carried out in a MATLAB setting,and the outcomes reveal a huge impact on EE.The simulation is carried in terms of EE,transmission time,throughput,packet success rate,convergence probability,and coverage region.The analysis from simu-lation shows that on improving the output of the device,interference among small cell base stations is reduced on increasing EE.The outcomes attained aid in the effective creation of M-Tier 3D HetNets for enhancing EE by employing Multi-Stream Carrier Aggregation(MSCA)in HetNets.
文摘Heterogeneous networks (HetNets) composed of overlapped cells with different sizes are expected to improve the transmission performance of data service significantly. User equipments (UEs) in the overlapped area of multiple cells might be able to access various base stations (BSs) of the cells, resulting in various transmission performances due to cell heterogeneity. Hence, designing optimal cell selection scheme is of particular importance for it may affect user quality of service (QoS) and network performance significantly. In this paper, we jointly consider cell selection and transmit power allocation problem in a HetNet consisting of multiple cells. For a single UE case, we formulate the energy efficiency of the UE, and propose an energy efficient optimization scheme which selects the optimal cell corresponding to the maximum energy efficiency of the UE. The problem is then extended to multiple UEs case. To achieve joint performance optimization of all the UEs, we formulate an optimization problem with the objective of maximizing the sum energy efficiency of UEs subject to QoS and power constraints. The formulated nonlinear fractional optimization problem is equivalently transformed into two subproblems, i.e., power allocation subproblem of each UE-eell pair, and cell selection subproblem of UEs. The two subproblems are solved respectively through applying Lagrange dual method and Kuhn-Munkres (K- M) algorithm. Numerical results demonstrate the efficiency of the proposed algorithm.
文摘LTE heterogeneous networks (HetNets) is becoming a popular topic since it was first developed in 3GPP Release 10. HetNets has the advantage to assemble various cell networks and enhance users’ Quality of Service (QoS) within the system. However, its development is still constrained by two main issues: 1) Load imbalance caused by different transmission powers for various tiers, and 2) The unbalanced transmission power may also increase unnecessary handover rate. In order to solve the first issue, Cell range expansion (CRE) can be applied in the system, which will benefit lower-tier cell during user association phase;CRE, Hysteresis Margin (HM) and Time-to-Trigger (TTT) will be utilized to bound UE within lower tier network of HetNets and therefore solve the second issue. On the other hand, the relationship of these parameters may be complicated and even reduce QoS if they are chosen incorrectly. This paper will evaluate the advantage and disadvantage of all three parameters and propose a Markov Chain Process (MCP) based method to find optimal HM, CRE and TTT values. And then, the simulation is taken and the optimal combination for our scenario is obtained to be 1 dB, 6 dB and 60 ms respectively. First contribution of this paper is to map the HetNets handover process into MCP and all the phases of handover can be calculated and analysed in probability way, so that further prediction and simulation can be realised. Second contribution is to establish a mathematical method to model the relationship of HM, CRE and TTT in HetNets, therefore the coordination of these three important parameters is achieved to obtain system optimization.
基金The National Science and Technology Major Project(2016ZX03001011-005)the National Natural Science Foundation of China(No.61571123,61521061)+1 种基金the Research Fund of National Mobile Communications Research Laboratory of Southeast University(No.2017A03)Qing Lan Project
文摘A new enhanced inter-cell interference coordination (elCIC) is adopted for managing almost blank sub-frame (ABS),which jointly exploits the time, frequency and power dimensions to improve the resource utilization. In particular, a non-uniform two tier heterogeneous network ( HetNet) is considered, where the pico cells are located close to the macro cell and the number of users in each pico cell is different. To alleviate the interference caused by the co-channeldeployment,the macro cells employ low power ABS (LP- ABS), and the resource blocks (RBs) are divided into twoparts during an ABS. One is exclusively reserved for macro cell users ad the other is reserved for pico cell users. Themacro cells are allowed to use different percentages of RBs and different powers for their own transmission during the LP- ABS. The user association,resource allocation,ABS proportion,the frequency band partition parameter and the transmission power of macro cells are considered, aiming at maximizing the proportional fairness utility of the system. An iterative algorithm is also proposed and simulation results demonstrate that the proposed algorithm can improve both the system throughput and user fairness compared with the existing schemes.
基金supported by the Program for Innovation Team Building at Institutions of High Education in Chongqing (KJTD201312)the Hi-Tech Research and Development Program of China (2015AA01A705,2014AA01A706)
文摘Most existing handover decision system (HDS) designs are monolithic, resulting in high computational cost and unbalance of overall network. A novel modular handover algorithm with a comprehensive load index for the 5th generation (5G) heterogeneous networks (HetNets) is proposed. In this paper, the handover parameters, serving as the basis for handover, are classified into network's quality of service (QoS) module, user preference (UP) module and degree of satisfaction (DS) module according to the new modular HDS design. To optimize switching process, the comprehensive network load index is deduced by using triangle module fusion operator. With respect to the existing handover algorithm, the simulation results indicate that the proposed algorithm can reduce the handover frequency and maintain user satisfaction at a higher level. Meanwhile, due to its block calculation, it can bring about 1.4 s execution time improvement.
基金supported in part by the National Natural Science Foundation of China(NSFC)under the grant number 61901075the Natural Science Foundation of Chongqing,China,under the grant number cstc2019jcyj-msxmX0602+1 种基金Chongqing Basic and Cutting edge Project under the grant number cstc2018jcyjAX0507Chongqing University of Posts and Telecommunications Doctoral Candidates High-end Talent Training Project(No.BYJS2017001).
文摘Cell-free Wireless Heterogeneous Networks(HetNets)have emerged as a technological alternative for conventional cellular networks.In this paper,we study the spatially correlative caching strategy,the energy analysis,and the impact of parameter β on the total energy cost of the cell-free wireless HetNets with Access Points distributed by Beta Ginibre Point Process(β-GPP).We derive the approximate expression of Successful Delivery Probability(SDP)based on the Signal-to-Interference-plus-Noise Ratio coverage model.From both analytical and simulation results,it is shown that the proposed caching model based on β-GPP placement,which jointly takes into account path loss,fading,and interference,can closely simulate the caching performance of the cell-free HetNets in terms of SDP.By guaranteeing the outage probability constraints,the analytical expression of the uplink energy cost is also derived.Another conclusion is that with AP locations modeled by β-GPP,the power consumption is not sensitive to β,but is sensitive to the dimension of the kernel function;hence β is less restrictive,and only the truncation of the Ginibre kernel has to be appropriately modified.These findings are new compared with the existing literature where the nodes are commonly assumed to be of Poisson Point Process,Matern Hard-Core Process,or Poisson Cluster Process deployment in cell-free systems.
基金This work was supported by National Natural Science Foundation of China.The grant number is 61672283.
文摘Full-duplex(FD)has been recognized as a promising technology for future 5G networks to improve the spectrum efficiency.However,the biggest practical impediments of realizing full-duplex communications are the presence of self-interference,especially in complex cellular networks.With the current development of self-interference cancellation techniques,full-duplex has been considered to be more suitable for device-to-device(D2D)and small cell communications which have small transmission range and low transmit power.In this paper,we consider the full-duplex D2D communications in multi-tier wireless networks and present an analytical model which jointly considers mode selection,resource allocation,and power control.Specifically,we consider a distance based mode selection scheme.The performance analysis of different D2D communications modes are performed based on stochastic geometry,and tractable analytical solutions are obtained.Then we investigate the optimal resource partitions between dedicated D2D mode and cellular mode.Numerical results validate the theoretical anlaysis and indicate that with appropriate proportions of users operated in different transmission modes and optimal partitioning of spectrum,the performance gain of FD-D2D communication can be achieved.
文摘Heterogeneous Networks(HetNets)and cell densification represent promising solutions for the surging data traffic demand in wireless networks.In dense HetNets,user traffic is steered toward the Low-Power Node(LPN)when possible to enhance the user throughput and system capacity by increasing the area spectral efficiency.However,because of the transmit power differences in different tiers of HetNets and irregular service demand,a load imbalance typically exists among different serving nodes.To offload more traffic to LPNs and coordinate the Inter-Cell Interference(ICI),Third-Generation Partnership Project(3GPP)has facilitated the development of the Cell Range Expansion(CRE),enhanced Inter-Cell Interference Coordination(eICIC)and Further enhanced ICIC(FeICIC).In this paper,we develop a cell clustering-based load-aware offsetting and an adaptive Low-Power Subframe(LPS)approach.Our solution allows the separation of User Association(UA)functions at the User Equipment(UE)and network server such that users can make a simple cell-selection decision similar to that in the maximum Received Signal Strength(max-RSS)based UA scheme,where the network server computes the load-aware offsetting and required LPS periods based on the load conditions of the system.The proposed solution is evaluated using system-level simulations wherein the results correspond to performance changes in different service regions.Results show that our method effectively solves the offloading and interference coordination problems in dense HetNets.
基金supported by the National Natural Science Foundation of China (NSFC) under Grants 61427801 and 61671251the Natural Science Foundation Program through Jiangsu Province of China under Grant BK20150852+3 种基金the open research fund of National Mobile Communications Research Laboratory, Southeast University under Grant 2017D05China Postdoctoral Science Foundation under Grant 2016M590481Jiangsu Planned Projects for Postdoctoral Research Funds under Grant 1501018Asupported by NSFC under Grants 61531011 and 61625106
文摘The Internet of things(IoT) as an important application of future communication networks puts a high premium on delay issues. Thus when Io T applications meet heterogeneous networks(HetNets) where macro cells are overlaid with small cells, some traditional problems need rethinking. In this paper, we investigate the delay-addressed association problem in two-tier Het Nets considering different backhaul technologies. Specifically, millimeter wave and fiber links are used to provide high-capacity backhaul for small cells. We first formulate the user association problem to minimize the total delay which depends on the probability of successful transmission, the number of user terminals(UTs), and the number of base stations(BSs). And then two algorithms for active mode and mixed mode are proposed to minimize the network delay. Simulation results show that algorithms based on mutual selection between UTs and BSs have better performance than those based on distance. And algorithms for mixed modes have less delay than those for active mode when the number of BSs is large enough, compared to the number of UTs.
基金supported by the National Major Science and Technology Project under Grant No.2009ZX03003-003-01Huawei Innovation Project under Grant No.YJCB2011060WL
文摘We investigate the optimal joint power allocation in Heterogeneous Networks (HetNets) to maximise its capacity. Consider- ing frequency reuse in the network, we study two power-constraint cases, i.e., per-cell po- wer constraint case and per-tier power con- straint case. We formulate the capacity maxi- mization problem by allowing each subcarrier of Marco eNodeB (MeNB) to be shared by users from multiple Picos. We mathematically demonstrate that the optimal power allocation in the per-cell power constraint case has a re- markably simple nature: each Pico transmits to its user with maximum power, while MeNB either selects only one user to jointly transmit with maximum power or does not transmit to any user. In the per-tier power constraint case, the difference is that the power allocation be- tween two Picos takes the form of water-fill- ing. Numerical results verify that our proposed schemes outperform the conventional interfe- rence coordination schemes.
基金This work was supported by National Natural Science Foundation of China(China)under grants 61373162Sichuan Science and Technology Support Project(China)under grants 2019YFG0183+1 种基金Visual Computing and Virtual Reality Sichuan Provincial Key Laboratory Project(China)under grants KJ201402was supported in part by the Japan Society for the Promotion of Science(JSPS)Grants-in-Aid for Scientific Research(KAKENHI)(Japan)under Grant JP18K18044.
文摘A Large-Scale Heterogeneous Network(LS-HetNet)integrates different networks into one uniform network system to provide seamless one-world network coverage.In LS-HetNet,various devices use different technologies to access heterogeneous networks and generate a large amount of data.For dealing with a large number of access requirements,these data are usually stored in the HetNet Domain Management Server(HDMS)of the current domain,and HDMS uses a centralized Authentication/Authorization/Auditing(AAA)scheme to protect the data.However,this centralized method easily causes the data to be modified or disclosed.To address this issue,we propose a blockchain-empowered AAA scheme for accessing data of LS-HetNet.Firstly,the account address of the blockchain is used as the identity authentication,and the access control permission of data is redesigned and stored on the blockchain,then processes of AAA are redefined.Finally,the experimental model on Ethereum private chain is built,and the results show that the scheme is not only secure but also decentral,without tampering and trustworthiness.