The vehicular sensor network (VSN) is an important part of intelligent transportation, which is used for real-timedetection and operation control of vehicles and real-time transmission of data and information. In the ...The vehicular sensor network (VSN) is an important part of intelligent transportation, which is used for real-timedetection and operation control of vehicles and real-time transmission of data and information. In the environmentofVSN, massive private data generated by vehicles are transmitted in open channels and used by other vehicle users,so it is crucial to maintain high transmission efficiency and high confidentiality of data. To deal with this problem, inthis paper, we propose a heterogeneous fault-tolerant aggregate signcryption scheme with an equality test (HFTASET).The scheme combines fault-tolerant and aggregate signcryption,whichnot onlymakes up for the deficiency oflow security of aggregate signature, but alsomakes up for the deficiency that aggregate signcryption cannot tolerateinvalid signature. The scheme supports one verification pass when all signcryptions are valid, and it supportsunbounded aggregation when the total number of signcryptions grows dynamically. In addition, this schemesupports heterogeneous equality test, and realizes the access control of private data in different cryptographicenvironments, so as to achieve flexibility in the application of our scheme and realize the function of quick searchof plaintext or ciphertext. Then, the security of HFTAS-ET is demonstrated by strict theoretical analysis. Finally, weconduct strict and standardized experimental operation and performance evaluation, which shows that the schemehas better performance.展开更多
The Wireless Sensor Network(WSN)is a network of Sensor Nodes(SN)which adopt radio signals for communication amongst themselves.There is an increase in the prominence of WSN adaptability to emerging applications like t...The Wireless Sensor Network(WSN)is a network of Sensor Nodes(SN)which adopt radio signals for communication amongst themselves.There is an increase in the prominence of WSN adaptability to emerging applications like the Internet of Things(IoT)and Cyber-Physical Systems(CPS).Data secur-ity,detection of faults,management of energy,collection and distribution of data,network protocol,network coverage,mobility of nodes,and network heterogene-ity are some of the issues confronted by WSNs.There is not much published information on issues related to node mobility and management of energy at the time of aggregation of data.Towards the goal of boosting the mobility-based WSNs’network performance and energy,data aggregation protocols such as the presently-used Mobility Low-Energy Adaptive Clustering Hierarchy(LEACH-M)and Energy Efficient Heterogeneous Clustered(EEHC)scheme have been exam-ined in this work.A novel Artificial Bee Colony(ABC)algorithm is proposed in this work for effective election of CHs and multipath routing in WSNs so as to enable effective data transfer to the Base Station(BS)with least energy utilization.There is avoidance of the local optima problem at the time of solution space search in this proposed technique.Experimentations have been conducted on a large WSN network that has issues with mobility of nodes.展开更多
In Heterogeneous Wireless Sensor Networks, the mobility of the sensor nodes becomes essential in various applications. During node mobility, there are possibilities for the malicious node to become the cluster head or...In Heterogeneous Wireless Sensor Networks, the mobility of the sensor nodes becomes essential in various applications. During node mobility, there are possibilities for the malicious node to become the cluster head or cluster member. This causes the cluster or the whole network to be controlled by the malicious nodes. To offer high level of security, the mobile sensor nodes need to be authenticated. Further, clustering of nodes improves scalability, energy efficient routing and data delivery. In this paper, we propose a cluster based secure dynamic keying technique to authenticate the nodes during mobility. The nodes with high configuration are chosen as cluster heads based on the weight value which is estimated using parameters such as the node degree, average distance, node's average speed, and virtual battery power. The keys are dynamically generated and used for providing security. Even the keys are compromised by the attackers, they are not able to use the previous keys to cheat or disuse the authenticated nodes. In addition, a bidirectional malicious node detection technique is employed which eliminates the malicious node from the network. By simulation, it is proved that the proposed technique provides efficient security with reduced energy consumption during node mobility.展开更多
Aimed at the problem of unbalanced energy existed in sensor networks, the clustered method is employed to enhance the efficient utilization of limited energy resources of the deployed sensor nodes. In this paper, we d...Aimed at the problem of unbalanced energy existed in sensor networks, the clustered method is employed to enhance the efficient utilization of limited energy resources of the deployed sensor nodes. In this paper, we describe the network lifetime as a function of the communication and data aggregation energy consumption and analyze the lifetime of different transmission schemes in the homogeneous and heterogeneous sensor networks. The analysis carried out in this paper can provide the guidelines for network deployment and protocol design in the future applications.展开更多
Sensing coverage and energy consumption are two primary issues in wireless sensor networks. Sensing coverage is closely related to network energy consumption. The performance of a sensor network depends to a large ext...Sensing coverage and energy consumption are two primary issues in wireless sensor networks. Sensing coverage is closely related to network energy consumption. The performance of a sensor network depends to a large extent on the sensing coverage, and its lifetime is determined by its energy consumption. In this paper, an energy-efficient Area Coverage protocol for Heterogeneous Energy sensor networks (ACHE) is proposed. ACHE can achieve a good performance in terms of sensing area coverage, lifetime by minimizing energy consumption for control overhead, and balancing the energy load among all nodes. Adopting the hierarchical clustering idea, ACHE selects the active nodes based on the average residual energy of neighboring nodes and its own residual energy parameters. Our simulation demonstrates that ACHE not only provide the high quality of sensing coverage, but also has the good performance in the energy efficiency. In addition, ACHE can better adapt the applications with the great heterogeneous energy capacities in the sensor networks, as well as effectively reduce the control overhead.展开更多
An improved LEACH for heterogeneous wireless sensor networks is proposed. Nodes are distributed in a sensing area that is divided into a number of same equilateral hexagons. Heterogeneous nodes act as the cluster head...An improved LEACH for heterogeneous wireless sensor networks is proposed. Nodes are distributed in a sensing area that is divided into a number of same equilateral hexagons. Heterogeneous nodes act as the cluster heads and ordinary nodes act as those cluster sensors in all clusters. The structure of WSNs is a two-layer structure. The upper layer consists of all cluster heads and the lower layer consists of all ordinary sensors managed by their corresponding cluster heads. The cluster heads and the ordinary sensors establish their pairwise keys respectively through utilizing different methods. The arithmetic balances energy expense among all kinds of nodes, saves the node energy, and prolongs the life of wireless sensor networks. Additionally, Analysis demonstrates that the security of wireless sensor networks has been improved obviously even with some heterogeneous nodes.展开更多
Heterogeneous wireless sensor network( HWSN) is composed of different functional nodes and is widely applied. With the deployment in hostile environment,the secure problem of HWSN is of great importance; moreover,it b...Heterogeneous wireless sensor network( HWSN) is composed of different functional nodes and is widely applied. With the deployment in hostile environment,the secure problem of HWSN is of great importance; moreover,it becomes complex due to the mutual characteristics of sensor nodes in HWSN. In order to enhance the network security,an asymmetric key pre-distributed management scheme for HWSN is proposed combining with authentication process to further ensure the network security; meanwhile,an effective authentication method for newly added nodes is presented. Simulation result indicates that the proposed scheme can improve the network security while reducing the storage space requirement efficiently.展开更多
L-SYNC is a synchronization protocol for Wireless Sensor Networks which is based on larger degree clustering providing efficiency in homogeneous topologies. In L-SYNC, the effectiveness of the routing algorithm for th...L-SYNC is a synchronization protocol for Wireless Sensor Networks which is based on larger degree clustering providing efficiency in homogeneous topologies. In L-SYNC, the effectiveness of the routing algorithm for the synchronization precision of two remote nodes was considered. Clustering in L-SYNC is according to larger degree techniques. These techniques reduce cluster overlapping, resulting in the routing algorithm requiring fewer hops to move from one cluster to another remote cluster. Even though L-SYNC offers higher precision compared to other algorithms, it does not support heterogeneous topologies and its synchronization algorithm can be influenced by unreliable data. In this paper, we present the L-SYNCng (L-SYNC next generation) protocol, working in heterogeneous topologies. Our proposed protocol is scalable in unreliable and noisy environments. Simulation results illustrate that L-SYNCng has better precision in synchronization and scalability.展开更多
Heterogeneous wireless sensor networks(HWSNs)are vulnerable to malware propagation,because of their low configuration and weak defense mechanism.Therefore,an optimality system for HWSNs is developed to suppress malwar...Heterogeneous wireless sensor networks(HWSNs)are vulnerable to malware propagation,because of their low configuration and weak defense mechanism.Therefore,an optimality system for HWSNs is developed to suppress malware propagation in this paper.Firstly,a heterogeneous-susceptible-exposed-infectious-recovered-susceptible(HSEIRS)model is proposed to describe the state dynamics of heterogeneous sensor nodes(HSNs)in HWSNs.Secondly,the existence of an optimal control problem with installing antivirus on HSNs to minimize the sum of the cumulative infection probabilities of HWSNs at a low cost based on the HSEIRS model is proved,and then an optimal control strategy for the problem is derived by the optimal control theory.Thirdly,the optimal control strategy based on the HSEIRS model is transformed into corresponding Hamiltonian by the Pontryagin’s minimum principle,and the corresponding optimality system is derived.Finally,the effectiveness of the optimality system is validated by the experimental simulations,and the results show that the infectious HSNs will fall to an extremely low level at a low cost.展开更多
Sensor nodes are mainly shielded in the field with limited power supply. In Wireless Sensor Networks, there must be a requirement of an efficient power management, because sensor nodes are deployed in unman attended a...Sensor nodes are mainly shielded in the field with limited power supply. In Wireless Sensor Networks, there must be a requirement of an efficient power management, because sensor nodes are deployed in unman attended area with non-rechargeable batteries. Power management can be done by different methods of routing protocols. The proposed Reliable Rim Routing (3R) technique is based on hybrid routing protocol for homogeneous and heterogeneous system for WSNs to ameliorate the performance of the overall system. In 3R, total node deployment area can be multipart in terms of rim and in each rim, and some of the sensor nodes transmit their sensed data directly to base station, and meanwhile remaining sensor nodes send the data through clustering technique to base station like SEP. Proposed 3R technique implementation proves its enhanced WSNs lifetime of 70% energy consumption and 40% throughput compared with existing protocols. Simulation and evaluation results outperformed in terms of energy consumption with increased throughput and network lifetime.展开更多
Wireless sensor networks(WSN)can be used in many fields.In wireless sensor networks,sensor nodes transmit data in multi hop mode.The large number of hops required by data transmission will lead to unbalanced energy co...Wireless sensor networks(WSN)can be used in many fields.In wireless sensor networks,sensor nodes transmit data in multi hop mode.The large number of hops required by data transmission will lead to unbalanced energy consumption and large data transmission delay of the whole network,which greatly affects the invulnerability of the network.Therefore,an optimal deployment of heterogeneous nodes(ODHN)algorithm is proposed to enhance the invulnerability of the wireless sensor networks.The algorithm combines the advantages of DEEC(design of distributed energy efficient clustering)clustering algorithm and BAS(beetle antenna search)optimization algorithm to find the globally optimal deployment locations of heterogeneous nodes.Then,establish a shortcut to communicate with sink nodes through heterogeneous nodes.Besides,considering the practical deployment operation,we set the threshold of the mobile location of heterogeneous nodes,which greatly simplifies the deployment difficulty.Simulation results show that compared with traditional routing protocols,the proposed algorithm can make the network load more evenly,and effectively improve energy-utilization and the fault tolerance of the whole network,which can greatly improve the invulnerability of the wireless sensor networks.展开更多
The main parameter to be considered in the wireless sensor network is the amount of energy that is available in each sensor node. The lifetime of the sensor node (SN) depends on it. As the SNs are deployed in remote l...The main parameter to be considered in the wireless sensor network is the amount of energy that is available in each sensor node. The lifetime of the sensor node (SN) depends on it. As the SNs are deployed in remote locations, if the entire energy is consumed, it would be very difficult to replace or recharge the energy source immediately. Hence the energy consumed by each node is very important. If individual SNs send information directly to the base station (BS), then the availability of energy in such SN decreases very fast. This will lead to reduction in the life time of the SN. Instead, the SNs can send the data to the cluster head (CH), then the CH consolidates the received data. The CH sends it to the BS periodically. In this way, utilizing CH for sending the information to the BS increases the lifetime of the SN. The cluster head selection is very crucial in such networks. This paper proposes a novel fuzzy based BEENSIH protocol for CH selection.展开更多
基金supported in part by the Open Fund of Advanced Cryptography and System Security Key Laboratory of Sichuan Province under Grant SKLACSS-202102in part by the Intelligent Terminal Key Laboratory of Sichuan Province under Grant SCITLAB-1019.
文摘The vehicular sensor network (VSN) is an important part of intelligent transportation, which is used for real-timedetection and operation control of vehicles and real-time transmission of data and information. In the environmentofVSN, massive private data generated by vehicles are transmitted in open channels and used by other vehicle users,so it is crucial to maintain high transmission efficiency and high confidentiality of data. To deal with this problem, inthis paper, we propose a heterogeneous fault-tolerant aggregate signcryption scheme with an equality test (HFTASET).The scheme combines fault-tolerant and aggregate signcryption,whichnot onlymakes up for the deficiency oflow security of aggregate signature, but alsomakes up for the deficiency that aggregate signcryption cannot tolerateinvalid signature. The scheme supports one verification pass when all signcryptions are valid, and it supportsunbounded aggregation when the total number of signcryptions grows dynamically. In addition, this schemesupports heterogeneous equality test, and realizes the access control of private data in different cryptographicenvironments, so as to achieve flexibility in the application of our scheme and realize the function of quick searchof plaintext or ciphertext. Then, the security of HFTAS-ET is demonstrated by strict theoretical analysis. Finally, weconduct strict and standardized experimental operation and performance evaluation, which shows that the schemehas better performance.
文摘The Wireless Sensor Network(WSN)is a network of Sensor Nodes(SN)which adopt radio signals for communication amongst themselves.There is an increase in the prominence of WSN adaptability to emerging applications like the Internet of Things(IoT)and Cyber-Physical Systems(CPS).Data secur-ity,detection of faults,management of energy,collection and distribution of data,network protocol,network coverage,mobility of nodes,and network heterogene-ity are some of the issues confronted by WSNs.There is not much published information on issues related to node mobility and management of energy at the time of aggregation of data.Towards the goal of boosting the mobility-based WSNs’network performance and energy,data aggregation protocols such as the presently-used Mobility Low-Energy Adaptive Clustering Hierarchy(LEACH-M)and Energy Efficient Heterogeneous Clustered(EEHC)scheme have been exam-ined in this work.A novel Artificial Bee Colony(ABC)algorithm is proposed in this work for effective election of CHs and multipath routing in WSNs so as to enable effective data transfer to the Base Station(BS)with least energy utilization.There is avoidance of the local optima problem at the time of solution space search in this proposed technique.Experimentations have been conducted on a large WSN network that has issues with mobility of nodes.
文摘In Heterogeneous Wireless Sensor Networks, the mobility of the sensor nodes becomes essential in various applications. During node mobility, there are possibilities for the malicious node to become the cluster head or cluster member. This causes the cluster or the whole network to be controlled by the malicious nodes. To offer high level of security, the mobile sensor nodes need to be authenticated. Further, clustering of nodes improves scalability, energy efficient routing and data delivery. In this paper, we propose a cluster based secure dynamic keying technique to authenticate the nodes during mobility. The nodes with high configuration are chosen as cluster heads based on the weight value which is estimated using parameters such as the node degree, average distance, node's average speed, and virtual battery power. The keys are dynamically generated and used for providing security. Even the keys are compromised by the attackers, they are not able to use the previous keys to cheat or disuse the authenticated nodes. In addition, a bidirectional malicious node detection technique is employed which eliminates the malicious node from the network. By simulation, it is proved that the proposed technique provides efficient security with reduced energy consumption during node mobility.
基金Sponsored by the Shanghai Leading Academic Discipline Project (Grant No.S30108 and 08DZ2231100)Shanghai Education Committee (Grant No.09YZ33)+1 种基金Shanghai Science Committee(Grant No.08220510900)Key Lab Fund of SIMIT
文摘Aimed at the problem of unbalanced energy existed in sensor networks, the clustered method is employed to enhance the efficient utilization of limited energy resources of the deployed sensor nodes. In this paper, we describe the network lifetime as a function of the communication and data aggregation energy consumption and analyze the lifetime of different transmission schemes in the homogeneous and heterogeneous sensor networks. The analysis carried out in this paper can provide the guidelines for network deployment and protocol design in the future applications.
基金supported by National Natural Science Foundation of China(61304256)Zhejiang Provincial Natural Science Foundation of China(LQ13F030013)+4 种基金Project of the Education Department of Zhejiang Province(Y201327006)Young Researchers Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering and Zhejiang Sci-Tech University Key Laboratory(ZSTUME01B15)New Century 151 Talent Project of Zhejiang Province521 Talent Project of Zhejiang Sci-Tech UniversityYoung and Middle-aged Talents Foundation of Zhejiang Provincial Top Key Academic Discipline of Mechanical Engineering
文摘Sensing coverage and energy consumption are two primary issues in wireless sensor networks. Sensing coverage is closely related to network energy consumption. The performance of a sensor network depends to a large extent on the sensing coverage, and its lifetime is determined by its energy consumption. In this paper, an energy-efficient Area Coverage protocol for Heterogeneous Energy sensor networks (ACHE) is proposed. ACHE can achieve a good performance in terms of sensing area coverage, lifetime by minimizing energy consumption for control overhead, and balancing the energy load among all nodes. Adopting the hierarchical clustering idea, ACHE selects the active nodes based on the average residual energy of neighboring nodes and its own residual energy parameters. Our simulation demonstrates that ACHE not only provide the high quality of sensing coverage, but also has the good performance in the energy efficiency. In addition, ACHE can better adapt the applications with the great heterogeneous energy capacities in the sensor networks, as well as effectively reduce the control overhead.
文摘An improved LEACH for heterogeneous wireless sensor networks is proposed. Nodes are distributed in a sensing area that is divided into a number of same equilateral hexagons. Heterogeneous nodes act as the cluster heads and ordinary nodes act as those cluster sensors in all clusters. The structure of WSNs is a two-layer structure. The upper layer consists of all cluster heads and the lower layer consists of all ordinary sensors managed by their corresponding cluster heads. The cluster heads and the ordinary sensors establish their pairwise keys respectively through utilizing different methods. The arithmetic balances energy expense among all kinds of nodes, saves the node energy, and prolongs the life of wireless sensor networks. Additionally, Analysis demonstrates that the security of wireless sensor networks has been improved obviously even with some heterogeneous nodes.
基金Support by the National High Technology Research and Development Program of China(No.2012AA120802)National Natural Science Foundation of China(No.61771186)+2 种基金Postdoctoral Research Project of Heilongjiang Province(No.LBH-Q15121)University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(No.UNPYSCT-2017125)Postgraduate Innovation Research Project of Heilongjiang University(No.YJSCX2018-051HLJU)
文摘Heterogeneous wireless sensor network( HWSN) is composed of different functional nodes and is widely applied. With the deployment in hostile environment,the secure problem of HWSN is of great importance; moreover,it becomes complex due to the mutual characteristics of sensor nodes in HWSN. In order to enhance the network security,an asymmetric key pre-distributed management scheme for HWSN is proposed combining with authentication process to further ensure the network security; meanwhile,an effective authentication method for newly added nodes is presented. Simulation result indicates that the proposed scheme can improve the network security while reducing the storage space requirement efficiently.
文摘L-SYNC is a synchronization protocol for Wireless Sensor Networks which is based on larger degree clustering providing efficiency in homogeneous topologies. In L-SYNC, the effectiveness of the routing algorithm for the synchronization precision of two remote nodes was considered. Clustering in L-SYNC is according to larger degree techniques. These techniques reduce cluster overlapping, resulting in the routing algorithm requiring fewer hops to move from one cluster to another remote cluster. Even though L-SYNC offers higher precision compared to other algorithms, it does not support heterogeneous topologies and its synchronization algorithm can be influenced by unreliable data. In this paper, we present the L-SYNCng (L-SYNC next generation) protocol, working in heterogeneous topologies. Our proposed protocol is scalable in unreliable and noisy environments. Simulation results illustrate that L-SYNCng has better precision in synchronization and scalability.
基金National Natural Science Foundation of China(No.61772018)Zhejiang Provincial Natural Science Foundation of China(No.LZ22F020002)。
文摘Heterogeneous wireless sensor networks(HWSNs)are vulnerable to malware propagation,because of their low configuration and weak defense mechanism.Therefore,an optimality system for HWSNs is developed to suppress malware propagation in this paper.Firstly,a heterogeneous-susceptible-exposed-infectious-recovered-susceptible(HSEIRS)model is proposed to describe the state dynamics of heterogeneous sensor nodes(HSNs)in HWSNs.Secondly,the existence of an optimal control problem with installing antivirus on HSNs to minimize the sum of the cumulative infection probabilities of HWSNs at a low cost based on the HSEIRS model is proved,and then an optimal control strategy for the problem is derived by the optimal control theory.Thirdly,the optimal control strategy based on the HSEIRS model is transformed into corresponding Hamiltonian by the Pontryagin’s minimum principle,and the corresponding optimality system is derived.Finally,the effectiveness of the optimality system is validated by the experimental simulations,and the results show that the infectious HSNs will fall to an extremely low level at a low cost.
文摘Sensor nodes are mainly shielded in the field with limited power supply. In Wireless Sensor Networks, there must be a requirement of an efficient power management, because sensor nodes are deployed in unman attended area with non-rechargeable batteries. Power management can be done by different methods of routing protocols. The proposed Reliable Rim Routing (3R) technique is based on hybrid routing protocol for homogeneous and heterogeneous system for WSNs to ameliorate the performance of the overall system. In 3R, total node deployment area can be multipart in terms of rim and in each rim, and some of the sensor nodes transmit their sensed data directly to base station, and meanwhile remaining sensor nodes send the data through clustering technique to base station like SEP. Proposed 3R technique implementation proves its enhanced WSNs lifetime of 70% energy consumption and 40% throughput compared with existing protocols. Simulation and evaluation results outperformed in terms of energy consumption with increased throughput and network lifetime.
基金This research was funded by the National Natural Science Foundation of China,No.61802010Hundred-Thousand-Ten Thousand Talents Project of Beijing No.2020A28+1 种基金National Social Science Fund of China,No.19BGL184Beijing Excellent Talent Training Support Project for Young Top-Notch Team No.2018000026833TD01.
文摘Wireless sensor networks(WSN)can be used in many fields.In wireless sensor networks,sensor nodes transmit data in multi hop mode.The large number of hops required by data transmission will lead to unbalanced energy consumption and large data transmission delay of the whole network,which greatly affects the invulnerability of the network.Therefore,an optimal deployment of heterogeneous nodes(ODHN)algorithm is proposed to enhance the invulnerability of the wireless sensor networks.The algorithm combines the advantages of DEEC(design of distributed energy efficient clustering)clustering algorithm and BAS(beetle antenna search)optimization algorithm to find the globally optimal deployment locations of heterogeneous nodes.Then,establish a shortcut to communicate with sink nodes through heterogeneous nodes.Besides,considering the practical deployment operation,we set the threshold of the mobile location of heterogeneous nodes,which greatly simplifies the deployment difficulty.Simulation results show that compared with traditional routing protocols,the proposed algorithm can make the network load more evenly,and effectively improve energy-utilization and the fault tolerance of the whole network,which can greatly improve the invulnerability of the wireless sensor networks.
文摘The main parameter to be considered in the wireless sensor network is the amount of energy that is available in each sensor node. The lifetime of the sensor node (SN) depends on it. As the SNs are deployed in remote locations, if the entire energy is consumed, it would be very difficult to replace or recharge the energy source immediately. Hence the energy consumed by each node is very important. If individual SNs send information directly to the base station (BS), then the availability of energy in such SN decreases very fast. This will lead to reduction in the life time of the SN. Instead, the SNs can send the data to the cluster head (CH), then the CH consolidates the received data. The CH sends it to the BS periodically. In this way, utilizing CH for sending the information to the BS increases the lifetime of the SN. The cluster head selection is very crucial in such networks. This paper proposes a novel fuzzy based BEENSIH protocol for CH selection.