Dilatancy-controlled gas flow in preferential pathways plays a key role in the safety analysis of radioactive waste repositories.This is particularly the case for bentonite,an often-preferred barrier material.Gas flow...Dilatancy-controlled gas flow in preferential pathways plays a key role in the safety analysis of radioactive waste repositories.This is particularly the case for bentonite,an often-preferred barrier material.Gas flow in preferential pathways is characterized by localization and spontaneous behavior,which is challenging to simulate in numerical models due to strong hydro-mechanical coupling.To analyze a laboratory experiment in the framework of the DECOVALEX-2023 project,this study introduced a new approach of combining continuous modelling methods with spatial material properties derived from material heterogeneities and experimental observations.The proposed model utilized hydro-mechanical spatial distributions,namely Young’s modulus and gas entry pressure,and elastoplasticity combined with a linear swelling model.A conceptual strain-dependent permeability approach simulated dilatancycontrolled gas flow based on hydro-mechanical coupling.To test the effectiveness of the presented approach,a gas injection test in a compacted,saturated bentonite sample was simulated using the opensource code OpenGeoSys 5.8 and compared with experimental observations.The presented methodology is capable of simulating localized gas flow in preferential pathways.The spatial distributions of Young’s modulus and gas entry pressure affect the swelling pressure,relative permeability and,in combination with the strain-dependent permeability model,also the intrinsic permeability.展开更多
基金This research was conducted within the DECOVALEX-2023 projectDECOVALEX is an international research project comprising participants from industry,government,and academia,focusing on development of understanding,models and codes in complex coupled problems in sub-surface geological and engineering applications.DECOVALEX-2023 is the current phase of the project.The authors appreciate the DECOVALEX-2023 Funding Organisations Andra,BASE,BGE,BGR,CAS,CNSC,COVRA,US DOE,ENRESA,ENSI,JAEA,KAERI,NWMO,RWM,SÚRAO,SSM and Taipower for their financial and technical support of the work described in this paper.The statements made in the paper are,however,solely those of the authors and do not necessarily reflect those of the Funding Organisations.This work was further supported by the German Federal Ministry for Economic Affairs and Climate Action(BMWK).
文摘Dilatancy-controlled gas flow in preferential pathways plays a key role in the safety analysis of radioactive waste repositories.This is particularly the case for bentonite,an often-preferred barrier material.Gas flow in preferential pathways is characterized by localization and spontaneous behavior,which is challenging to simulate in numerical models due to strong hydro-mechanical coupling.To analyze a laboratory experiment in the framework of the DECOVALEX-2023 project,this study introduced a new approach of combining continuous modelling methods with spatial material properties derived from material heterogeneities and experimental observations.The proposed model utilized hydro-mechanical spatial distributions,namely Young’s modulus and gas entry pressure,and elastoplasticity combined with a linear swelling model.A conceptual strain-dependent permeability approach simulated dilatancycontrolled gas flow based on hydro-mechanical coupling.To test the effectiveness of the presented approach,a gas injection test in a compacted,saturated bentonite sample was simulated using the opensource code OpenGeoSys 5.8 and compared with experimental observations.The presented methodology is capable of simulating localized gas flow in preferential pathways.The spatial distributions of Young’s modulus and gas entry pressure affect the swelling pressure,relative permeability and,in combination with the strain-dependent permeability model,also the intrinsic permeability.