期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
Determining role of heterogeneous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel 被引量:8
1
作者 Yi-shuang Yu Bin Hu +5 位作者 Min-liang Gao Zhen-jia Xie Xue-quan Rong Gang Han Hui Guo Cheng-jia Shang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第5期816-825,共10页
Here we present a novel approach of intercritical heat treatment for microstructure tailoring,in which intercritical annealing is introduced between conventional quenching and tempering.This induced a heterogeneous mi... Here we present a novel approach of intercritical heat treatment for microstructure tailoring,in which intercritical annealing is introduced between conventional quenching and tempering.This induced a heterogeneous microstructure consisting of soft intercritical ferrite and hard tempered martensite,resulting in a low yield ratio(YR)and high impact toughness in a high-strength low-alloy steel.The initial yielding and subsequent work hardening behavior of the steel during tensile deformation were modified by the presence of soft intercritical ferrite after intercritical annealing,in comparison to the steel with full martensitic microstructure.The increase in YR was related to the reduction in hardness difference between the soft and hard phases due to the precipitation of nano-carbides and the recovery of dislocations during tempering.The excellent low-temperature toughness was ascribed not only to the decrease in probability of microcrack initiation for the reduction of hardness difference between two phases,but also to the increase in resistance of microcrack propagation caused by the high density of high angle grain boundaries. 展开更多
关键词 heterogeneous microstructure yield ratio impact toughness intercritical heat treatment high-strength low-alloy steel
下载PDF
Microstructural evolution and dynamic recrystallization mechanisms of additively manufactured TiAl alloy with heterogeneous microstructure during hot compression
2
作者 Hui TAO Hui-zhong LI +5 位作者 Jia-hui LI Li WANG Wei-wei HE Xiao-fen TAN Rui ZHOU Xiao-peng LIANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS 2024年第10期3208-3220,共13页
Microstructural evolution and dynamic recrystallization(DRX)mechanisms of a Ti-48Al-2Cr-2Nb(at.%)alloy prepared by selective electron beam melting(SEBM)during hot deformation at 1150℃and 0.1 s^(-1)were investigated b... Microstructural evolution and dynamic recrystallization(DRX)mechanisms of a Ti-48Al-2Cr-2Nb(at.%)alloy prepared by selective electron beam melting(SEBM)during hot deformation at 1150℃and 0.1 s^(-1)were investigated by hot compression tests,optical microscope(OM),scanning electron microscope(SEM),electron back-scattered diffraction(EBSD)and transmission electron microscope(TEM).The results show that the initial microstructure of the as-SEBMed alloy exhibits layers of coarseγgrains and fineγ+α_(2)+(α_(2)/γ)lamellar mixture grains alternately along the building direction.During the early stage of hot deformation,deformation twins tend to form within the coarse grains,facilitating subsequent deformation,and a small number of DRX grains appear in the fine-grained regions.With the increase of strain,extensive DRX grains are formed through different DRX mechanisms in both coarse and fine-grained regions,involving discontinuous dynamic recrystallization mechanism(DDRX)in the fine-grained regions and a coexistence of DDRX and continuous dynamic recrystallization(CDRX)in the coarsegrained regions. 展开更多
关键词 TiAl alloy selective electron beam melting heterogeneous microstructure discontinuous dynamic recrystallization(DDRX) continuous dynamic recrystallization(CDRX)
下载PDF
Role of heterogenous microstructure and deformation behavior in achieving superior strength-ductility synergy in zinc fabricated via laser powder bed fusion 被引量:1
3
作者 Zhi Dong Changjun Han +7 位作者 Yanzhe Zhao Jinmiao Huang Chenrong Ling Gaoling Hu Yunhui Wang Di Wang Changhui Song Yongqiang Yang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期225-245,共21页
Zinc(Zn)is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties.In this work,laser powder bed fusion(LPBF)additive manufacturin... Zinc(Zn)is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties.In this work,laser powder bed fusion(LPBF)additive manufacturing was employed to fabricate pure Zn with a heterogeneous microstructure and exceptional strength-ductility synergy.An optimized processing window of LPBF was established for printing Zn samples with relative densities greater than 99%using a laser power range of 80∼90 W and a scanning speed of 900 mm s−1.The Zn sample printed with a power of 80 W at a speed of 900 mm s−1 exhibited a hierarchical heterogeneous microstructure consisting of millimeter-scale molten pool boundaries,micrometer-scale bimodal grains,and nanometer-scale pre-existing dislocations,due to rapid cooling rates and significant thermal gradients formed in the molten pools.The printed sample exhibited the highest ductility of∼12.1%among all reported LPBF-printed pure Zn to date with appreciable ultimate tensile strength(∼128.7 MPa).Such superior strength-ductility synergy can be attributed to the presence of multiple deformation mechanisms that are primarily governed by heterogeneous deformation-induced hardening resulting from the alternative arrangement of bimodal Zn grains with pre-existing dislocations.Additionally,continuous strain hardening was facilitated through the interactions between deformation twins,grains and dislocations as strain accumulated,further contributing to the superior strength-ductility synergy.These findings provide valuable insights into the deformation behavior and mechanisms underlying exceptional mechanical properties of LPBF-printed Zn and its alloys for implant applications. 展开更多
关键词 laser powder bed fusion ZINC heterogeneous microstructure bimodal grains strength-ductility synergy
下载PDF
Selective laser melting of bulk immiscible alloy with enhanced strength:Heterogeneous microstructure and deformation mechanisms 被引量:3
4
作者 Shengfeng Zhou Min Xie +3 位作者 Changyi Wu Yanliang Yi Dongchu Chen Lai-Chang Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第9期81-87,共7页
To overcome the dimension limits of immiscible alloys produced by traditional techniques and enhance their mechanical properties,bulk Cu-Fe-based immiscible alloy with abundant nanotwins and stacking faults was succes... To overcome the dimension limits of immiscible alloys produced by traditional techniques and enhance their mechanical properties,bulk Cu-Fe-based immiscible alloy with abundant nanotwins and stacking faults was successfully produced by selective laser melting(SLM).The SLM-produced bulk immiscible alloy displays a heterogeneous microstructure characterized by micro-scaledγ-Fe particles dispersed in fineε-Cu matrix with a high fraction(~92%)of high-angle grain boundaries.Interestingly,abundant nanotwins and stacking faults are generated in the interior of nano-scaledγ-Fe particles embedded withinε-Cu matrix.The heterogeneous interface of soft domains(ε-Cu)and hard domains(γ-Fe)not only induces the geometrically necessary dislocations(GNDs)but also affects the dislocation propagation during plastic deformation.Therefore,the bimodal heterogeneous interface,and the resistance of nanotwins and stacking faults to the propagation of partial dislocation make the bulk immiscible alloy exhibit an enhanced strength of~590 MPa and a good ductility of~8.9%. 展开更多
关键词 Immiscible alloy Selective laser melting heterogeneous microstructure NANOTWINS Stacking faults
原文传递
Heterogeneous Microstructure-Induced Mechanical Responses in Various Sub-Zones of EH420 Shipbuilding Steel Welded Joint Under High Heat Input Electro-Gas Welding 被引量:2
5
作者 Xu Xie Tan Zhao +2 位作者 Heming Zhao Song Li Cong Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第10期1427-1433,共7页
Heterogeneous microstructure-induced mechanical responses in EH420 shipbuilding steel welded joint by electro-gas welding processed have been systematically studied by scanning electron microscopy,electron backscatter... Heterogeneous microstructure-induced mechanical responses in EH420 shipbuilding steel welded joint by electro-gas welding processed have been systematically studied by scanning electron microscopy,electron backscatter diffraction and mechanical testing.Comparing with the coarse-grained heat-affected zone(CGHAZ),the weld metal presents higher toughness(129.3 J vs.37.3 J)as it contains a large number of acicular ferrites with high-angle grain boundaries(frequency 79.2%)and special grain boundary∑3(frequency 55.3%).Moreover,coarse austenite grains in CGHAZ and slender martensite–austenite constituents between bainite laths may likely facilitate crack propagation.Polygonal ferrites and tempered pearlites formed at the junction of the fine-grained heat-affected zone and the intercritical heat-affected zone induced a softened zone with an average hardness of 185 HV0.5,which is the main reason for the occurrence of tensile fracture. 展开更多
关键词 heterogeneous microstructure Mechanical properties Electro-gas welding High heat input Shipbuilding steel
原文传递
A novel immiscible high entropy alloy strengthened via L1_(2)-nanoprecipitate
6
作者 WANG Zheng-qin FAN Ming-yu +5 位作者 ZHANG Yang LI Jun-peng LIU Li-yuan HAN Ji-hong LI Xing-hao ZHANG Zhong-wu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1808-1822,共15页
The low-cost Fe-Cu,Fe-Ni,and Cu-based high-entropy alloys exhibit a widespread utilization prospect.However,these potential applications have been limited by their low strength.In this study,a novel Fe_(31)Cu_(31)Ni_(... The low-cost Fe-Cu,Fe-Ni,and Cu-based high-entropy alloys exhibit a widespread utilization prospect.However,these potential applications have been limited by their low strength.In this study,a novel Fe_(31)Cu_(31)Ni_(28)Al_(4)Ti_(3)Co_(3) immiscible high-entropy alloy(HEA)was developed.After vacuum arc melting and copper mold suction casting,this HEA exhibits a unique phase separation microstructure,which consists of striped Cu-rich regions and Fe-rich region.Further magnification of the striped Cu-rich region reveals that it is composed of a Cu-rich dot-like phase and a Fe-rich region.The aging alloy is further strengthened by a L1_(2)-Ni_(3)(AlTi)nanoprecipitates,achieving excellent yield strength(1185 MPa)and uniform ductility(~8.8%).The differential distribution of the L1_(2) nanoprecipitate in the striped Cu-rich region and the external Fe-rich region increased the strength difference between these two regions,which increased the strain gradient and thus improved hetero-deformation induced(HDI)hardening.This work provides a new route to improve the HDI hardening of Fe-Cu alloys. 展开更多
关键词 heterogeneous microstructure precipitation strengthening high-entropy alloy phase separation mechanical property
下载PDF
Strength and ductility optimization of HPDC AlSi8MgCuZn2 alloys by modifying pre-aging treatment
7
作者 Yuan-hang Jiang Hui-ting Zheng +1 位作者 Fei Liu Hai-dong Zhao 《China Foundry》 SCIE EI CAS CSCD 2024年第4期343-351,共9页
Considering the components produced by high pressure die casting(HPDC)process usually with ultra-large sizes and complex morphologies,high temperature solid solution treatment is not a suitable method to further impro... Considering the components produced by high pressure die casting(HPDC)process usually with ultra-large sizes and complex morphologies,high temperature solid solution treatment is not a suitable method to further improve their mechanical properties.In this study,two-stage aging treatment with different pre-aging times was designed and employed to further improve the mechanical properties of HPDC Al8SiMgCuZn alloy.The characteristics of precipitates were evaluated by a transmission electron microscope(TEM),and the precipitation strengthening mechanism was discussed.The results reveal that the strengthening is mainly contributed by the precipitation ofβ″phase after two-stage aging,and the number density and size of the precipitates are significantly depended on the pre-aging time.The number density of precipitates is increased with the pre-aging time prolonged from 0 h to 4 h,and then decreases with the further increase of pre-aging time from 4 h to 6 h.The precipitates with the highest density and smallest size are observed after pre-aging for 4 h.After pre-aged at 100℃for 4 h and then artificial aged at 200℃for 30 min,the yield strength of 207 MPa,ultimate tensile strength of 325 MPa and elongation of 7.6%are achieved. 展开更多
关键词 high pressure die cast aluminum alloy microstructural heterogeneity mechanical properties precipitation strengthening two-stage aging
下载PDF
Fe-based high-entropy alloy with excellent mechanical properties enabled by nanosized precipitates and heterogeneous grain distribution
8
作者 Heechan Jung Sangwon Lee +3 位作者 Taehyeok Kang Alireza Zargaran Pyuck-Pa Choi Seok Su Sohn 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第14期71-81,共11页
High-entropy alloys(HEAs)consisting of CoCrFeNiAlTi systems,with a face-centered cubic(FCC)matrix reinforced by ordered L12 precipitates,have demonstrated exceptional strength-ductility combinations.However,the curren... High-entropy alloys(HEAs)consisting of CoCrFeNiAlTi systems,with a face-centered cubic(FCC)matrix reinforced by ordered L12 precipitates,have demonstrated exceptional strength-ductility combinations.However,the current compositional design of HEAs heavily relies on high Ni and Co contents,compro-mising the balance between properties and cost.Thus,it is crucial to optimize the cost-performance trade-offby fine-tuning the range of Fe,Co,and Ni,while maintaining excellent strength-ductility com-bination.In this study,we propose a novel Fe-based HEA with nanosized precipitates and a heteroge-neous grain distribution,achieving a strength-ductility combination comparable to state-of-the-art Ni-or Co-based HEAs.The alloy benefits from both precipitation hardening and hetero-deformation-induced strengthening attributed to the heterogeneous grain distribution,resulting in excellent yield strength of 1433 MPa,tensile strength of 1599 MPa,and ductility of 22%.The microstructural evolution and its in-fluence on mechanical properties are unraveled with respect to the observation of precipitate-dislocation interaction and hetero-deformation-induced stress(HDI stress)evaluation.This study suggests that the challenge of balancing properties and cost can be addressed through optimized compositional and mi-crostructural design. 展开更多
关键词 High-entropy alloys Precipitation heterogeneous microstructure Mechanical property HDI stress
原文传递
Superior strength-plasticity synergy in a heterogeneous lamellar Ti_(2)AlC/TiAl composite with unique interfacial microstructure 被引量:1
9
作者 Pei Liu Bo Hou +3 位作者 Aiqin Wang Jingpei Xie Zhenbo Wang Feng Ye 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第28期21-32,共12页
Improving the plasticity of TiAl alloys at room temperature has been a longstanding challenge for the de-velopment of next-generation aerospace engines.By adopting the nacre-like architecture design strategy,we have o... Improving the plasticity of TiAl alloys at room temperature has been a longstanding challenge for the de-velopment of next-generation aerospace engines.By adopting the nacre-like architecture design strategy,we have obtained a novel heterogeneous lamellar Ti_(2)AlC/TiAl composite with superior strength-plasticity synergy,i.e.,compressive strength of∼2065 MPa and fracture strain of∼27%.A combination of micropil-lar compression and large-scale atomistic simulation has revealed that the superior strength-plasticity synergy is attributed to the collaboration of Ti_(2)AlC reinforcement,lamellar architecture and heteroge-neous interface.More specifically,multiple deformation modes in Ti_(2)AlC,i.e.,basal-plane dislocations,atomic-scale ripples and kink bands,could be activated during the compression,thus promoting the plas-tic deformation capability of composite.Meanwhile,the lamellar architecture could not only induce sig-nificant stress redistribution and crack deflection between Ti_(2)AlC and TiAl,but also generate high-density SFs and DTs interactions in TiAl,leading to an improved strength and strain hardening ability.In addi-tion,profuse unique Ti_(2)AlC(1¯10¯3)/TiAl(111)interfaces in the composite could dramatically contribute to the strength and plasticity due to the interface-mediated dislocation nucleation and obstruction mecha-nisms.These findings offer a promising paradigm for tailoring microstructure of TiAl matrix composites with extraordinary strength and plasticity at ambient temperature. 展开更多
关键词 Ti_(2)AlC/TiAl composite heterogeneous lamellar microstructure Micropillar compression Interface-mediated deformation Strength-plasticity synergy
原文传递
Theoretical design and distribution control of precipitates and solute elements in Al−Zn−Mg−Cu alloys with heterostructure 被引量:7
10
作者 Liang-liang YUAN Ming-xing GUO +3 位作者 Yong YAN Wei-jun FENG Zan-yang LIU Lin-zhong ZHUANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第11期3328-3341,共14页
In order to simultaneously improve strength and formability,an analytical model for the concentration distribution of precipitates and solute elements is established and used to theoretically design and control the he... In order to simultaneously improve strength and formability,an analytical model for the concentration distribution of precipitates and solute elements is established and used to theoretically design and control the heterogeneous microstructure of Al−Zn−Mg−Cu alloys.The results show that the dissolution of precipitates is mainly affected by particle size and heat treatment temperature,the heterogeneous distribution level of solute elements diffused in the alloy matrix mainly depends on the grain size,while the heat treatment temperature only has an obvious effect on the concentration distribution in the larger grains,and the experimental results of Al−Zn−Mg−Cu alloy are in good agreement with the theoretical model predictions of precipitates and solute element concentration distribution.Controlling the concentration distribution of precipitates and solute elements in Al−Zn−Mg−Cu alloys is the premise of accurately constructing heterogeneous microstructure in micro-domains,which can be used to significantly improve the formability of Al−Zn−Mg−Cu alloys with a heterostructure. 展开更多
关键词 Al−Zn−Mg−Cu alloys concentration distribution diffusion heterogeneous microstructure model
下载PDF
Heterogeneous precipitate microstructure in titanium alloys for simultaneous improvement of strength and ductility 被引量:1
11
作者 Mengyuan Hao Pei Li +8 位作者 Xuexiong Li Tianlong Zhang Dong Wang Qiaoyan Sun Libin Liu Jinshan Li Yuyou Cui Rui Yang Dongsheng Xu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第29期150-163,共14页
The design of alloys with simultaneous high strength and high ductility is still a difficult challenge.Here,we propose a new approach to designing multi-phase alloys with a synergistic combination of strength and duct... The design of alloys with simultaneous high strength and high ductility is still a difficult challenge.Here,we propose a new approach to designing multi-phase alloys with a synergistic combination of strength and ductility by engineering heterogeneous precipitate microstructures through the activation of different transformation mechanisms.Using a two-phase titanium alloy as an example,phase field simulations are carried out firstly to design heat treatment schedules that involve both conventional nucleation and growth and non-conventional pseudospinodal decomposition mechanisms,and the calculated microstructures have been evaluated by crystal plasticity finite element modeling.According to simulations,we then set a two-step heat treatment to produce bimodalα+βmicrostructure in Ti-10V-2Fe-3Al.Further mechanical testing shows that the ductility of the alloy is increased by~50%and the strength is increased by~10%as compared to its unimodal counterpart.Our work may provide a general way to improve the mechanical properties of alloys through multiscale microstructure design. 展开更多
关键词 Titanium alloys Phase field simulation Crystal plasticity finite element Two-step aging Pseudospinodal decomposition mechanisms Multiscale heterogeneous microstructure
原文传递
Effects of microstructural heterogeneity on fatigue properties of cast aluminum alloys 被引量:4
12
作者 JIAO Yi-nan ZHANG Yi-fan +6 位作者 MA Shi-qing SANG De-li ZHANG Yang ZHAO Jin-jin WU Sheng-chuan LIU Yong-qiang YANG Shao-pu 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第3期674-697,共24页
Cast Al alloys are widely employed for engine components,structural parts,gear box,chassis,etc.and subjected to mechanical cyclic load during operation.The accurate fatigue life prediction of these alloys is essential... Cast Al alloys are widely employed for engine components,structural parts,gear box,chassis,etc.and subjected to mechanical cyclic load during operation.The accurate fatigue life prediction of these alloys is essential for normal operation as fatigue cracks initiated during operation induce the lubrication oil leak and serious safety hazard.Microstructural heterogeneity,including shrinkage/gaspores and secondary phase particles,is the most detrimental factor that affects fatigue life of cast Al alloys.The approximate fatigue life cycles could be estimated based on the size distribution and locations of shrinkage pores/defects.The relationship between crack population and stress was reported by statistical distributions and the cumulative probability for cast Al alloys fail at a certain stress could be predicted by combination of Paris law and pore size distribution.Pore depth was found to dominate the stress field around the pore on the surface and the maximum stress increases sharply when the pore intercepted with the surface at its top.The microstructure of cast Al alloys usually is composed of primary Al dendrites,eutectic silicon,Fe-rich particles and other intermetallic particles are dependent upon alloy composition and heat treatment.The coalescence of microcracks initiated from the fractured secondary phases was clearly found and can accelerate the initiation and propagation of the fatigue cracks.A link between defect features and the fatigue strength needs to be established through a good understanding of the fatigue damage mechanisms associated with the microstructural features under specific loading conditions.This paper reviews the influences of shrinkage/gaspores and secondary phase particles,formed during casting process,on the fatigue life of Al-Si-Mg cast Al alloys. 展开更多
关键词 cast aluminum alloys FATIGUE microstructural heterogeneous shrinkage/gas pore secondary phase particles
下载PDF
Analysis on deformation and texture formation mechanism of hot-deformed Nd-Fe-B magnets based on heterogeneous structure evolution 被引量:2
13
作者 Yuyang Tang Yuqing Li +5 位作者 Xiaochang Xu Ming Yue Weiqiang Liu Hongguo Zhang Qingmei Lu Weixing Xia 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第21期28-35,共8页
In this paper, microstructure, micromagnetic structure, texture, together with magnetic properties of the hot-deformed(HD) Nd-Fe-B magnets were systematically studied to understand the deformation process and the form... In this paper, microstructure, micromagnetic structure, texture, together with magnetic properties of the hot-deformed(HD) Nd-Fe-B magnets were systematically studied to understand the deformation process and the formation mechanism of c-axis texture. The results show that the platelet grains are formed in the fine-grain regions at the initial stage of the deformation. As the amount of deformation increases, the proportion of platelet grains increases and arranges gradually, causing the formation of c-axis texture, till the grain merging occurres when the deformation is excessive. It should be noted that the rare earth-rich phase in the fine-grained region slowly diffuses to the coarse-grained region where only grain growth can be observed during deformation. The deformation mechanism and formation of c-axis texture in HD Nd-Fe-B magnets can be deduced to be accomplished by the processes of dissolution-precipitation diffusion, grain rotation and grain arrangement, based on the characterization of microstructure and texture evolution. Also, approaches to optimize the preparation process and magnetic properties of the hot-deformed Nd-Fe-B magnets were discussed. 展开更多
关键词 Hot-deformed Nd-Fe-B magnet heterogeneous microstructure Deformation mechanism C-axis texture COERCIVITY
原文传递
Inhomogeneity of microstructure and mechanical properties in the nugget of friction stir welded thick 7075 aluminum alloy joints 被引量:11
14
作者 Yuqing Mao Liming Ke +2 位作者 Yuhua Chen Fencheng Liu Li Xing 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第1期228-236,共9页
In this study, 20 mm thick AA7075-T6 alloy plates were joined by friction stir welding. The microstructure and mechanical properties of the nugget zone along the thickness direction from the top to the bottom was inve... In this study, 20 mm thick AA7075-T6 alloy plates were joined by friction stir welding. The microstructure and mechanical properties of the nugget zone along the thickness direction from the top to the bottom was investigated. The results showed that the microstructure including the grain size, the degree of dynamic recrystallization, the misorientation angle distribution and the precipitation phase containing its size, type and content exhibited a gradient distribution along the thickness direction. The testing results of mechanical properties of the slices showed that the nugget was gradually weakened along the depth from the top to the bottom. The maximum ultimate tensile strength, yield strength and elongation of the slice in the nugget top-middle are obtained, which are 415 MPa, 255 MPa and 8.1%, respectively. 展开更多
关键词 AA7075 thick plate Friction stir welding Nugget Heterogeneity microstructure Mechanical properties
原文传递
Ductile and high strength Cu fabricated by solid-state cold spray additive manufacturing 被引量:6
15
作者 Chaoyue Chen Yingchun Xie +9 位作者 Shuo Yin Wenya Li Xiaotao Luo Xinliang Xie Ruixin Zhao Chunming Deng Jiang Wang Hanlin Liao Min Liu Zhongming Ren 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第3期234-243,共10页
In this work,pure Cu with excellent strength and ductility(UTS of 271 MPa,elongation to fracture of 43.5%,uniform elongation of 30%)was prepared using cold spray additive manufacturing(CSAM),realizing a breakthrough i... In this work,pure Cu with excellent strength and ductility(UTS of 271 MPa,elongation to fracture of 43.5%,uniform elongation of 30%)was prepared using cold spray additive manufacturing(CSAM),realizing a breakthrough in the field.An in-depth investigation was conducted to reveal the microstructure evolution,strengthening and ductilization mechanisms of the CSAM Cu,as well as the single splats.The results show that the CSAM Cu possesses a unique heterogeneous microstructure with a bimodal grain structure and extensive infinitely circulating ring-mounted distribution of twinning.Based on the single splat observation,the entire copper particle forms a gradient nano-grained(GNG)structure after high-speed impact deposition.The GNG-structured single splat serves as a unit to build the heterogeneous microstructure with bimodal grain distribution during the successive deposition in CSAM.The results also show that CSAM can achieve synergistic strengthening and ductilization by controlling the grain refinement and dislocation density.This work provides potential for CSAM technique in manufacturing various metallic parts with the desired combination of high strength and good ductility without additional post-treatments. 展开更多
关键词 Cold spray additive manufacturing Copper heterogeneous microstructure Strength DUCTILITY
原文传递
Heterogeneous particle structure formation during post-crystallization of spray-dried powder
16
作者 Nima Yazdanpanah Tim A.G. Langrish 《Particuology》 SCIE EI CAS CSCD 2016年第4期72-79,共8页
The formation of heterogeneous particle structure in skim milk powder has been investigated in a post- crystallization facility using experimental and a mathematical model. Various processing conditions were used to p... The formation of heterogeneous particle structure in skim milk powder has been investigated in a post- crystallization facility using experimental and a mathematical model. Various processing conditions were used to produce these heterogeneous structures. The experimental process parameters were used as initial and boundary conditions for the model. The modelled data agreed well with the experimental data. The experimental and modelling results show that the powder processed at high water activity (aw = 0.7) with low initial moisture content (X0 = 0.01 kg/kg) developed a crystalline surface layer while the core of the particle remained amorphous. This structure is referred to as an egg-shell structure. The powder that was processed at low water activity (αw = 0.1) with high initial moisture content (X0 = 0.2 kg/kg) developed a crystalline core while the surface of the particle remained amorphous. This structure is referred to as an egg-yolk structure. Understanding the dependency of particle microstructures on the processing conditions could be useful when developing procedures to control the drying equipment because the particle microstructure affects the physicochemical properties of the powder and potential applications and behaviour of the powder. 展开更多
关键词 heterogeneous structure microstructure modification Post-crystallization Phase change Complex domain matrix
原文传递
Chemical patterning enhanced by increasing quenching temperature in a medium-Mn steel 被引量:1
17
作者 Chao Zhang Zhi-ping Xiong +2 位作者 De-zhen Yang Valeriy Dudko Xing-wang Cheng 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第10期1916-1920,共5页
Chemical heterogeneity in high-temperature austenite is an effective way to tune the austenite-to-martensite transformation during cooling.The effect of quenching temperature on microstructure evolution is investigate... Chemical heterogeneity in high-temperature austenite is an effective way to tune the austenite-to-martensite transformation during cooling.The effect of quenching temperature on microstructure evolution is investigated when the high-temperature austenite is heterogeneous.After fast austenitization from partitioned pearlite consisting of Mn-enriched cementite and Mn-depleted ferrite in Fe-0.29C-3.76Mn-1.50Si(wt.%)steel,quenching to room temperature and quenching to 130℃ followed by 400℃ partitioning are both applied.With increasing quenching temperature from 25 to 130℃,the amount of heterogeneous microstructure(lamellar ghost pearlite)increases from 10.6%to 33.6% and the thickness of Mn-enriched retained austenite film is increased from 31.9±5.9 to 51.5±4.4 nm,indicating an enhancement of chemical patterning.It is probably ascribed to the reduction in driving force for austenite-to-martensite transformation,which requires a lower Mn content for austenite retention. 展开更多
关键词 heterogeneous microstructure Phase transformation Retained austenite Quenching temperature Chemical patterning
原文传递
Recrystallization effect on surface passivation of Hastelloy X alloy fabricated by laser powder bed fusion
18
作者 Xing He Li Wang +6 位作者 Decheng Kong Ruixue Li Wei Zhang Kunjie Dai Xiaoqing Ni Ketai He Chaofang Dong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第32期245-258,共14页
Post-heat treatment is generally adopted in the additive manufacturing field due to its alleviation of high residual stress and modification of rapid-solidified multilevel heterogeneous microstructure,and the related ... Post-heat treatment is generally adopted in the additive manufacturing field due to its alleviation of high residual stress and modification of rapid-solidified multilevel heterogeneous microstructure,and the related performance of the heat-treated counterparts calls for a systemic investigation to build a criterion of the heat treatment procedure.In this work,we focus on the heat treatment effects on the recrystallization of the Hastelloy X alloy produced by the laser powder bed fusion(LPBF)method,and the related surface passivation of the heat-treated counterparts is meticulously assessed as well.Results show that the multilevel heterostructure for LPBF Hastelloy X alloy consists of sub-micro dislocation cell substructures with Cr/Mo elemental segregation,fine columnar grains,and periodically-distributed molten pools.After heat treatment,partially and fully recrystallized structures for LPBF Hastelloy X alloys were achieved at 1100 and 1200℃for 1 h,respectively.Furthermore,the as-built LPBF Hastelloy X alloy shows superior corrosion resistance while the heat-treated one(1100℃)exhibits the worst in the borate buffer solution.The growth of passive film exhibited a highly linear correlation with the nucleation process controlled by diffusion,and high dislocation density and low angle grain boundary decreased the diffusion coefficient of cation vacancies,augmenting the nucleation sites of the passive film and enhancing its growth rate.Moreover,the micro-galvanic effect resulting from the partially recrystallized microstructure actively facilitated the formation of inhomogeneous porous passive films,leading to the worst corrosion resistance. 展开更多
关键词 Laser powder bed fusion Hastelloy X RECRYSTALLIZATION heterogeneous microstructure Passive film
原文传递
Achieving high strength in laser powder-bed fusion processed AlFeCuZr alloy via dual-nanoprecipitations and grain boundary segregation
19
作者 Jing-Yu Xu Cheng Zhang +3 位作者 Li-Xue Liu Rong Guo Ming-Jun Sun Lin Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第6期56-66,共11页
Additive manufacturing of aluminum alloys has received significant attention in the aerospace industry;however,achieving sufficient high strength,especially at elevated temperatures,remains challenging.Here,a crack-fr... Additive manufacturing of aluminum alloys has received significant attention in the aerospace industry;however,achieving sufficient high strength,especially at elevated temperatures,remains challenging.Here,a crack-free and near-full dense Al-1Fe-0.6Cu-1.3Zr alloy was fabricated by the laser powder bed fusion(LPBF)technique.The Al-Fe-Cu-Zr alloy exhibits heterogeneous microstructures with two distinct zones.One is the so-called coarse-grain zones(CGZs)with an average grain size of 0.95μm,where(Al,Cu)Fe_(3) nanoparticles precipitate in the Al matrix and Fe and Cu cosegregate at the grain boundaries(GBs).The other is fine-grain zones(FGZs)with an average grain size of 0.45μm,where an Al 3 Zr nanoparti-cle precipitates in each of theα-Al grains(serves as the nuclei),and Fe-rich nanoprecipitates and Fe/Cu cosegregation appear at the GBs.As a result,the LPBF Al-Fe-Cu-Zr alloy,with these unique heteroge-neous structures,displays high strength at both room temperature and elevated temperatures,e.g.,with high yield strengths of 500 MPa at room temperature,and 163 MPa at 573 K,both are higher than those of additive manufactured Al-based alloys reported thus far.It is suggested that the high strength over a wide temperature range of the current LPBF Al alloy is mainly attributed to the combination of the precipitation strengthening mechanism and grain-boundary strengthening mechanism. 展开更多
关键词 Laser powder bed fusion Aluminum alloy heterogeneous microstructure NANOPRECIPITATION High strength
原文传递
Laser powder bed fusion of high-strength Sc/Zr-modified Al–Mg alloy:phase selection,microstructural/mechanical heterogeneity,and tensile deformation behavior 被引量:4
20
作者 Zihong Wang Xin Lin +6 位作者 Nan Kang Jing Chen Hua Tan Zhe Feng Zehao Qin Haiou Yang Weidong Huang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第36期40-56,共17页
Laser powder bed fusion(L-PBF)of Sc/Zr-modified Al-based alloys has recently become a promising method for developing a new generation of high-performance Al alloys.To clarify the modification roles of Sc/Zr elements,... Laser powder bed fusion(L-PBF)of Sc/Zr-modified Al-based alloys has recently become a promising method for developing a new generation of high-performance Al alloys.To clarify the modification roles of Sc/Zr elements,an Al–4.66Mg–0.48Mn–0.72Sc–0.33Zr(wt.%)alloy was processed using L-PBF.The effect of the local solidification condition of the molten pool on the precipitation behavior of primary Al_(3)(Sc,Zr)was analyzed based on time-dependent nucleation theory.It was found that primary Al_(3)(Sc,Zr)inevitably precipitated at the fusion boundary,while its precipitation could be effectively suppressed in the inner region of the molten pool.This subsequently induced the formation of a heterogeneousα-Al matrix.After direct aging,the heredity of solidification microstructure introduced heterogeneous secondary Al_(3)(Sc,Zr)precipitates withinα-Al matrix.Owing to the inverse relationship between grain boundary strengthening and precipitation strengthening,the direct-aged sample with dual heterogeneous structures exhibited reduced mechanical heterogeneity,resulting in lowered hetero-deformation-induced hardening.The low strain-hardening capability in the direct-aged sample promoted necking instability while inducing a large Lüders elongation,which effectively improved the tensile ductility. 展开更多
关键词 Additive manufacturing Al–Mg–Sc–Zr alloys Laser powder bed fusion heterogeneous microstructure Deformation behavior
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部