期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Visual representation and characterization of three-dimensional hydrofracturing cracks within heterogeneous rock through 3D printing and transparent models 被引量:21
1
作者 Peng Liu Yang Ju +3 位作者 Pathegama G. Ranjith Zemin Zheng Li Wang Ayai Wanniarachchi 《International Journal of Coal Science & Technology》 EI 2016年第3期284-294,共11页
The heterogeneity of unconventional reservoir rock tremendously affects its hydrofracturing behavior. A visual representation and accurate characterization of the three-dimensional (3D) growth and distribution of hy... The heterogeneity of unconventional reservoir rock tremendously affects its hydrofracturing behavior. A visual representation and accurate characterization of the three-dimensional (3D) growth and distribution of hydrofracturing cracks within heterogeneous rocks is of particular use to the design and implementation of hydrofracturing stimulation of unconventional reservoirs. However, because of the difficulties involved in visually representing and quantitatively characterizing a 3D hydrofracturing crack-network, this issue remains a challenge. In this paper, a novel method is proposed for physically visualizing and quantitatively characterizing the 3D hydrofracturing crack-network distributed through a heterogeneous structure based on a natural glutenite sample. This method incorporates X-ray microfocus computed tomography (μCT), 3D printing models and hydrofracturing triaxial tests to represent visually the heterogeneous structure, and the 3D crack growth and distribution within a transparent rock model during hydrofracturing. The coupled effects of material heterogeneity and confining geostress on the 3D crack initiation and propagation were analyzed. The results indicate that the breakdown pressure of a heterogeneous rock model is significantly affected by material heterogeneity and confining geostress. The measured breakdown pressures of heterogeneous models are apparently different from those predicted by traditional theories. This study helps to elucidate the quantitative visualization and characterization of the mechanism and influencing factors that determine the hydrofracturing crack initiation and propagation in heterogeneous reservoir rocks. 展开更多
关键词 Hydrofracturing cracks Visual representation and characterization Transparentized structures heterogeneous rock 3D printing Coupled effects of heterogeneity and geostress
下载PDF
Evaluation of the possible slip surface of a highly heterogeneous rock slope using dynamic reduction method 被引量:2
2
作者 CHEN Guo-qing HUANG Run-qiu +3 位作者 ZHANG Feng-shou ZHU Zhen-fei SHI Yu-chuan WANG Jian-chao 《Journal of Mountain Science》 SCIE CSCD 2018年第3期672-684,共13页
A new method, the dynamic reduction method(DRM) combined with the strain-softening method, was applied to evaluate the possible slip surface of a highly heterogeneous rock slope of the Dagangshan hydropower station in... A new method, the dynamic reduction method(DRM) combined with the strain-softening method, was applied to evaluate the possible slip surface of a highly heterogeneous rock slope of the Dagangshan hydropower station in Southwest China.In DRM, only the strength of the failure elements is reduced and the softening reduction factor K is adopted to calculate the strength parameters. The simulation results calculated by DRM show that the further slip surface on the right slope of the Dagangshan hydropower station is limited in the middle part of the slope, while both SRM(strength reduction method) and LEM(limit equilibrium method) predict a failure surface which extends upper and longer. The observations and analysis from the three recorded sliding events indicate that the failure mode predicted by DRM is more likely the scenario.The results in this study illustrate that for highly heterogeneous slopes with geological discontinuities in different length scales, the proposed DRM can provide a reliable prediction of the location of the slip surface. 展开更多
关键词 Dynamic Reduction Method Strainsoftening Highly heterogeneous rock slope Slip surface Geological discontinuity Hydropower station
下载PDF
ANALYSIS OF THE LOCALIZATION OF DAMAGE AND THE COMPLETE (STRESS-STRAIN) RELATION FOR MESOSCOPIC HETEROGENEOUS ROCK UNDER UNIAXIAL TENSILE LOADING
3
作者 周小平 王建华 +1 位作者 张永兴 哈秋聆 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第9期1031-1038,共8页
The mechanical behavior of rock under uniaxial tensile loading is different from that of rock under compressive loads. A micromechanics-based model was proposed for mesoscopic heterogeneous brittle rock undergoing irr... The mechanical behavior of rock under uniaxial tensile loading is different from that of rock under compressive loads. A micromechanics-based model was proposed for mesoscopic heterogeneous brittle rock undergoing irreversible changes of their microscopic structures due to microcrack growth. The complete stress-strain relation including linear elasticity, nonlinear hardening,rapid stress drop and strain softening was obtained. The influence of all microcracks with different sizes and orientations were introduced into the constitutive relation by using the probability density function describing the distribution of orientations and the probability density function describing the distribution of sizes. The influence of Weibull distribution describing the distribution of orientations and Rayleigh function describing the distribution of sizes on the constitutive relation were researched. Theoretical predictions have shown to be consistent with the experimental results. 展开更多
关键词 uniaxial tensile loading mesoscopic heterogeneous rock localization of damage and deformation complete stress-strain relation
下载PDF
Modeling hydraulic fracture in heterogeneous rock materials using permeability-based hydraulic fracture model 被引量:4
4
作者 Ming Li Peijun Guo +2 位作者 Dieter F.E.Stolle Li Liang Yitao Shi 《Underground Space》 SCIE EI 2020年第2期167-183,共17页
Hydraulic fracturing is one of the most important techniques for enhancing oil/gas production.The permeability-based hydraulic fracture(PHF)model,which is based on the smeared-crack method and considers the interactio... Hydraulic fracturing is one of the most important techniques for enhancing oil/gas production.The permeability-based hydraulic fracture(PHF)model,which is based on the smeared-crack method and considers the interaction between the pore pressure and solid phase,is adopted in the present study for a fully-coupled simulation of the hydraulic fracture in a heterogeneous rock formation.The level set method(LSM),which is used to describe the distribution of material properties of heterogeneous rocks,is coupled with the PHF model.Using the coupled PHF–LSM model,a series of finite element method(FEM)simulations are carried out to investigate the characteristics of a hydraulic fracture(e.g.,the breakdown pressure and fracture propagation)in heterogeneous rocks.Three types of heterogeneous rocks are examined:layered rock,rock with distributed inclusions,and rock with random spatial variations in the material properties.The results of the numerical simulations show that the coupled PHF–LSM model can describe the material interface without changing the FEM mesh used to discretize the physical domain.Further,the model effectively simulates hydraulic-fracturing problems for various heterogeneous rocks. 展开更多
关键词 Hydraulic fracture heterogeneous rock material Smeared-crack method Level set method
原文传递
ANALYSIS OF THE LOCALIZATION OF DAMAGE AND THE COMPLETE STRESS-STRAIN RELATION FOR MESOSCOPIC HETEROGENEOUS BRITTLE ROCK SUBJECTED TO COMPRESSIVE LOADS
5
作者 周小平 张永兴 +1 位作者 哈秋聆 王建华 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第9期1039-1046,共8页
A micromechanics-based model is established. The model takes the interaction among sliding cracks into account, and it is able to quantify the effect of various parameters on the localization condition of damage and d... A micromechanics-based model is established. The model takes the interaction among sliding cracks into account, and it is able to quantify the effect of various parameters on the localization condition of damage and deformation for brittle rock subjected to compressive loads. The closed-form explicit expression for the complete stress-strain relation of rock containing microcracks subjected to compressive loads was obtained. It is showed that the complete stress-strain relation includes linear elasticity,nonlinear hardening,rapid stress drop and strain softening.The behavior of rapid stress drop and strain softening is due to localization of deformation and damage. Theoretical predictions have shown to be consistent with the experimental results. 展开更多
关键词 compressive load mesoscopic heterogeneous rock complete stress-strain relation localization of damage and deformation
下载PDF
Influence of heterogeneity on rock strength and stiffness using discrete element method and parallel bond model 被引量:8
6
作者 Spyridon Liakas Catherine O’Sullivan Charalampos Saroglou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第4期575-584,共10页
The particulate discrete element method(DEM) can be employed to capture the response of rock,provided that appropriate bonding models are used to cement the particles to each other.Simulations of laboratory tests are ... The particulate discrete element method(DEM) can be employed to capture the response of rock,provided that appropriate bonding models are used to cement the particles to each other.Simulations of laboratory tests are important to establish the extent to which those models can capture realistic rock behaviors.Hitherto the focus in such comparison studies has either been on homogeneous specimens or use of two-dimensional(2D) models.In situ rock formations are often heterogeneous,thus exploring the ability of this type of models to capture heterogeneous material behavior is important to facilitate their use in design analysis.In situ stress states are basically three-dimensional(3D),and therefore it is important to develop 3D models for this purpose.This paper revisits an earlier experimental study on heterogeneous specimens,of which the relative proportions of weaker material(siltstone) and stronger,harder material(sandstone) were varied in a controlled manner.Using a 3D DEM model with the parallel bond model,virtual heterogeneous specimens were created.The overall responses in terms of variations in strength and stiffness with different percentages of weaker material(siltstone) were shown to agree with the experimental observations.There was also a good qualitative agreement in the failure patterns observed in the experiments and the simulations,suggesting that the DEM data enabled analysis of the initiation of localizations and micro fractures in the specimens. 展开更多
关键词 Discrete element method(DEM) heterogeneous rocks Strength and stiffness Parallel bond model
下载PDF
Numerical simulation on effect of heterogeneity on modeΙfracture characteristics of rock 被引量:5
7
作者 WANG Jin-tao ZUO Jian-ping 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期3063-3077,共15页
Rock is more sensitive to tensile loading than compressive loading,since the tensile strength of rock is much lower than compressive strength.The fracture characteristics of rock in the tensile state are of great sign... Rock is more sensitive to tensile loading than compressive loading,since the tensile strength of rock is much lower than compressive strength.The fracture characteristics of rock in the tensile state are of great significance to the understanding of rock failure mechanisms.To this end,we have conducted numerical simulation researches on modeⅠcracking process of rock with varying homogeneity,using the Realistic Failure Process Analysis program.With the increase of homogeneity,cracks are concentrating to the ligament area with a decreasing number of crack bifurcations,and the main crack path is becoming smooth.Crack behaviors and mechanical properties are influenced significantly when the homogeneity index is in the range of 1.5 to 5.When the homogeneity index is greater than 30,they are not affected by rock homogeneity and the rock can be considered as essentially homogeneous.It is considered that the global and local strengths are affected by the distribution of rock mechanical properties at mesoscale,which influence the crack behaviors and mechanical characteristics. 展开更多
关键词 rock heterogeneity crack evolution subcritical crack growth fracture mechanism
下载PDF
Heterogeneity of Parent Rocks and Its Constraints on Geochemical Criteria in Weathering Crusts of Carbonate Rocks 被引量:3
8
作者 WANGShijie FENGZhigang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第5期1143-1153,共11页
Owing to the low contents of their acid-insoluble components, carbonate rocks tend to decrease sharply in volume in association with the formation of weathering crust. The formation of a 1 m-thick weathering crust wou... Owing to the low contents of their acid-insoluble components, carbonate rocks tend to decrease sharply in volume in association with the formation of weathering crust. The formation of a 1 m-thick weathering crust would usually consume more than ten meters to several tens of meters of thickness of parent rocks. The knowledge of how to identify the homogeneity of parent rocks is essential to understand the formation mechanism of weathering crust in karst regions, especially that of thick-layered red weathering crust. In this work the grain-size analyses have demonstrated that the three profiles studied are the residual weathering crust of carbonate rocks and further showed that there objectively exists the heterogeneity of parent rocks in the three studied weathering crusts. The heterogeneity of parent rocks can also be reflected m geochemical parameters of major elements, just as the characteristics of frequency plot of grain-size distribution. Conservative trace element ratios Zr/Hf and Nb/Ta are proven to be unsuitable for tracing the heterogeneity of parent rocks of weathering crust, but its geochemical mechanism is unclear. The authors strongly suggest in this paper that the identification of the homogeneity of parent rocks of weathering crust in karst regions is of prime necessity. 展开更多
关键词 carbonate rock weathering crust heterogeneity of parent rock grain-size analysis geochemical parameters
下载PDF
Evaluation and classification of rock heterogeneity based on acoustic emission detection 被引量:1
9
作者 Tongzhao Zhang Hongguang Ji +4 位作者 Xiaobo Su Shuang You Daolu Quan Zhou Zhang Jinzhe Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第12期2117-2125,共9页
For deep rock mechanics and subsurface engineering,accurately characterizing and evaluating rock heterogeneity as well as analyzing the correlation between the heterogeneity and physical and mechanical properties of r... For deep rock mechanics and subsurface engineering,accurately characterizing and evaluating rock heterogeneity as well as analyzing the correlation between the heterogeneity and physical and mechanical properties of rocks are critical.This study investigated the characteristics of acoustic emission signals produced in the process of strong and weak phase damage to rocks.The failure mechanisms of the strong and weak phases were analyzed by performing Brazilian splitting tests on different metagabbros and granites.The strong-weak phase ratio of the rocks and the uniformity of their spatial distribution were characterized.Test results show that as the feldspar develops,the strong-phase ratio of the metagabbro increases.However,the spatial distribution of feldspar minerals in the metagabbro becomes less uniform.The mineral spatial distribution uniformity in the altered granite is good;however,its strong-phase ratio is low.Furthermore,the strong-phase ratio of the typical granite is high;however,its mineral spatial distribution uniformity is poor.Moreover,uniaxial and triaxial test results show that the peak strength and elastic modulus of the rocks are related to the strong-weak phase ratio and mineral spatial distribution uniformity of the rocks.This study provides a new analytical method for the mechanical evaluation of deep rocks. 展开更多
关键词 acoustic emission rock heterogeneity rock classification rock mechanics
下载PDF
Experimental study of hydraulic fracture propagation with multi-cluster in-plane perforations in a horizontal well 被引量:1
10
作者 Xian Shi Yuan-Yuan Yang +3 位作者 Xiang-Wei Kong Qi Gao Shu Jiang Hai-Jun Mao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3258-3270,共13页
Tri-axial fracturing studies were carried out to understand the impact of lateral mechanical parameters on fracture propagation from multiple in-plane perforations in horizontal wells. Additionally, the discussion cov... Tri-axial fracturing studies were carried out to understand the impact of lateral mechanical parameters on fracture propagation from multiple in-plane perforations in horizontal wells. Additionally, the discussion covered the effects of geology, treatment, and perforation characteristics on the non-planar propagation behavior. According to experimental findings, two parallel transverse fractures can be successfully initiated from in-plane perforation clusters in the horizontal well because of the in-plane perforation, the guide nonuniform fishbone structure fracture propagation still can be exhibited. The emergence of transverse fractures and axial fractures combined as complex fractures under low horizontal principal stress difference and large pump rate conditions. The injection pressure was also investigated, and the largest breakdown pressure can be also found for samples under these conditions.The increase in perforation number or decrease in the cluster spacing could provide more chances to increase the complexity of the target stimulated zone, thus affecting the pressure fluctuation. In a contrast, the increase in fracturing fluid viscosity can reduce the multiple fracture complexity. The fracture propagation is significantly affected by the change in the rock mechanical properties. The fracture geometry in the high brittle zone seems to be complicated and tends to induce fracture reorientation from the weak-brittle zone. The stress shadow effect can be used to explain the fracture attraction, branch, connection, and repulsion in the multiple perforation clusters for the horizontal well.The increase in the rock heterogeneity can enhance the stress shadow effect, resulting in more complex fracture geometry. In addition, the variable density perforation and temporary plugging fracturing were also conducted, demonstrating higher likelihood for non-uniform multiple fracture propagation. Thus, to increase the perforation efficiency along the horizontal well, it is necessary to consider the lateral fracability of the horizontal well on target formation. 展开更多
关键词 heterogeneous rock In-plane perforation Stress shadowing Tri-axial fracturing Multiple perforation clusters
下载PDF
Effect of heterogeneity on occurrence of zonal disintegration around deep underground openings 被引量:1
11
作者 Jia Peng Zhu Wancheng Zhang Shichao 《International Journal of Mining Science and Technology》 SCIE EI 2014年第6期859-864,共6页
By utilizing the two numerical codes RFPA3 D and FLAC3 D, the effect of heterogeneity on failure mode and failure mechanism of rock around deep underground excavations under tri-axial stress is analyzed. It is found t... By utilizing the two numerical codes RFPA3 D and FLAC3 D, the effect of heterogeneity on failure mode and failure mechanism of rock around deep underground excavations under tri-axial stress is analyzed. It is found that zonal disintegration is a large scale shear-slip failure developed in deep surrounding rock mass under tri-axial stress, which is accompanied by a large amount of tensile failure. The distance between fractures and the number of fractures have a close correlation with the rock mass heterogeneity. With an increase of the homogeneity index of the rock mass, the distances between fractures decrease and the number of fractures increases. For an intact hard rock mass with relative high homogeneity, only failure mode characterized as v-shaped notches can be formed due to the intersection of intensively developed shear bands. None of the zonal disintegration can be formed due to the fact that with increasing homogeneity, the failure mechanism of rock mass is gradually dominated by shear failure rather than tensile failure. 展开更多
关键词 Deep rock mass Heterogeneity Zonal disintegration Failure mode
下载PDF
Application of wavelet to strength log from scratch test
12
作者 He Zhang Jia-Liang Le Emmanuel Detournay 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1161-1170,共10页
This paper proposes a methodology to construct logs of rock strength from the cutting force signal recorded in scratch tests conducted in the ductile regime.The approach,which is based on the application of discrete w... This paper proposes a methodology to construct logs of rock strength from the cutting force signal recorded in scratch tests conducted in the ductile regime.The approach,which is based on the application of discrete wavelet transforms,recognizes the existence of two length scales[c and[r.The strength length scale[c represents the length over which it is meaningful to measure strength,while the repeatability length scale[r is related to the resolution at which the force signal must be observed to become insensitive to the stochastic micro-failure events triggered by the motion of the cutter.It is postulated that the original cutting force signal,assumed to be sampled at a high enough frequency,can be decomposed into a deterministic signal intrinsic to the rock and a stochastic one resulting from discrete rock failure events.The technique of multiresolution analysis based on the maximal overlap discrete wavelet transform is applied as a low-pass filter to the original cutting force signals so as to wipe out the high-frequency components associated with the stochastic rock failure events.A criterion to determine the optimum cutoff frequency of the low-pass filter and the corresponding repeatability length scale is discussed in terms of the correlation coefficients between different filtered signals.It is shown that the low-pass filtered signals obtained at the optimum cutoff frequency have two salient features:(i)repeatability over different tests conducted at the same depth of cut on the same sample,and(ii)variability along the cutting distance.The excellent repeatability reveals that the deterministic background trend of the original force signals is relevant to the rock strength property,and the variability of the background trend captures the spatial variation of the rock strength. 展开更多
关键词 Scratch tests Intrinsic specific energy rock heterogeneity Wavelet method
下载PDF
Research on seismic fluid identification driven by rock physics 被引量:56
13
作者 YIN XingYao ZONG ZhaoYun WU GuoChen 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第2期159-171,共13页
Seismic fluid identification works as an effective approach to characterize the fluid feature and distribution of the reservoir underground with seismic data. Rock physics which builds bridge between the elastic param... Seismic fluid identification works as an effective approach to characterize the fluid feature and distribution of the reservoir underground with seismic data. Rock physics which builds bridge between the elastic parameters and reservoir parameters sets the foundation of seismic fluid identification, which is also a hot topic on the study of quantitative characterization of oil/gas reservoirs. Study on seismic fluid identification driven by rock physics has proved to be rewarding in recognizing the fluid feature and distributed regularity of the oil/gas reservoirs. This paper summarizes the key scientific problems immersed in seismic fluid identification, and emphatically reviews the main progress of seismic fluid identification driven by rock physics domestic and overseas, as well as discusses the opportunities, challenges and future research direction related to seismic fluid identification. Theoretical study and practical application indicate that we should incorporate rock physics, numerical simulation, seismic data processing and seismic inversion together to enhance the precision of seismic fluid identification. 展开更多
关键词 rock reservoir porosity saturated permeability inversion saturation hydrocarbon sandstone heterogeneity
原文传递
The Three-Stage Model Based on Strain Strength Distribution for the Tensile Failure Process of Rock and Concrete Materials
14
作者 Rukun Guo Shihai Li Dong Zhou 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2016年第5期514-526,共13页
A three-stage model is introduced to describe the tensile failure process of rock and concrete materials.Failure of the material is defined to contain three stages in the model,which include elastic deformation stage,... A three-stage model is introduced to describe the tensile failure process of rock and concrete materials.Failure of the material is defined to contain three stages in the model,which include elastic deformation stage,body damage stage and localization damage stage.The failure mode change from uniform body damage to localization damage is expressed.The heterogeneity of material is described with strain strength distribution.The fracture factor and intact factor,defined as the distribution function of strain strength,are used to express the fracture state in the failure process.And the distributive parameters can be determined through the experimental stress-strain curve. 展开更多
关键词 fractured heterogeneity rock tensile Strain localization intact granite softening macroscopic
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部