期刊文献+
共找到850篇文章
< 1 2 43 >
每页显示 20 50 100
Optoelectronic Synapses Based on MXene/Violet Phosphorus van der Waals Heterojunctions for Visual‑Olfactory Crossmodal Perception
1
作者 Hailong Ma Huajing Fang +3 位作者 Xinxing Xie Yanming Liu He Tian Yang Chai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期38-52,共15页
The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal percept... The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal perception,but related researches are scarce.Here,we demonstrate an optoelectronic synapse for vision-olfactory crossmodal perception based on MXene/violet phosphorus(VP)van der Waals heterojunctions.Benefiting from the efficient separation and transport of photogenerated carriers facilitated by conductive MXene,the photoelectric responsivity of VP is dramatically enhanced by 7 orders of magnitude,reaching up to 7.7 A W^(−1).Excited by ultraviolet light,multiple synaptic functions,including excitatory postsynaptic currents,pairedpulse facilitation,short/long-term plasticity and“learning-experience”behavior,were demonstrated with a low power consumption.Furthermore,the proposed optoelectronic synapse exhibits distinct synaptic behaviors in different gas environments,enabling it to simulate the interaction of visual and olfactory information for crossmodal perception.This work demonstrates the great potential of VP in optoelectronics and provides a promising platform for applications such as virtual reality and neurorobotics. 展开更多
关键词 Violet phosphorus MXene Van der Waals heterojunctions Optoelectronic synapses Crossmodal perception
下载PDF
Engineering homotype heterojunctions in hard carbon to induce stable solid electrolyte interfaces for sodium-ion batteries 被引量:2
2
作者 Chengxin Yu Yu Li +6 位作者 Haixia Ren Ji Qian Shuo Wang Xin Feng Mingquan Liu Ying Bai Chuan Wu 《Carbon Energy》 SCIE CAS CSCD 2023年第1期181-193,共13页
Developing effective strategies to improve the initial Coulombic efficiency(ICE)and cycling stability of hard carbon(HC)anodes for sodium-ion batteries is the key to promoting the commercial application of HC.In this ... Developing effective strategies to improve the initial Coulombic efficiency(ICE)and cycling stability of hard carbon(HC)anodes for sodium-ion batteries is the key to promoting the commercial application of HC.In this paper,homotype heterojunctions are designed on HC to induce the generation of stable solid electrolyte interfaces,which can effectively increase the ICE of HC from 64.7%to 81.1%.The results show that using a simple surface engineering strategy to construct a homotypic amorphous Al_(2)O_(3) layer on the HC could shield the active sites,and further inhibit electrolyte decomposition and side effects occurrence.Particularly,due to the suppression of continuous decomposition of NaPF 6 in ester-based electrolytes,the accumulation of NaF could be reduced,leading to the formation of thinner and denser solid electrolyte interface films and a decrease in the interface resistance.The HC anode can not only improve the ICE but elevate its sodium storage performance based on this homotype heterojunction composed of HC and Al_(2)O_(3).The optimized HC anode exhibits an outstanding reversible capacity of 321.5mAhg^(−1) at 50mAg^(−1).The cycling stability is also improved effectively,and the capacity retention rate is 86.9%after 2000 cycles at 1Ag^(−1) while that of the untreated HC is only 52.6%.More importantly,the improved sodium storage behaviors are explained by electrochemical kinetic analysis. 展开更多
关键词 hard carbon anodes homotype heterojunctions sodium-ion batteries solid electrolyte interface surface engineering
下载PDF
Air-condition process for scalable fabrication of CdS/ZnS 1D/2D heterojunctions toward efficient and stable photocatalytic hydrogen production
3
作者 Dongdong Zhang Jie Teng +7 位作者 Hongli Yang Zhi Fang Kai Song Lin Wang Huilin Hou Xianlu Lu Chris RBowen Weiyou Yang 《Carbon Energy》 SCIE CSCD 2023年第7期1-14,共14页
We report the scalable fabrication of CdS/ZnS 1D/2D heterojunctions under ambient air conditions(i.e.,room temperature and atmospheric pressure)in which ZnS nanoparticles are anchored on the surface of CdS nanosheets.... We report the scalable fabrication of CdS/ZnS 1D/2D heterojunctions under ambient air conditions(i.e.,room temperature and atmospheric pressure)in which ZnS nanoparticles are anchored on the surface of CdS nanosheets.The as-formed heterojunctions exhibit a significantly enhanced photocatalytic H_(2) evolution rate of 14.02 mmol h^(-1) g^(-1) when irradiated with visible light,which is~10 and 85 times higher than those of pristine CdS nanosheets and CdS nanoparticles,respectively,and superior to most of the CdS-based photocatalysts reported to date.Furthermore,they provide robust photocatalytic performance with demonstratable stability over 58 h,indicating their potential for practical applications.The formation of 1D/2D heterojunctions not only provides improved exposed active sites that respond to illumination but also provides a rapid pathway to generate photogenerated carriers for efficient separation and transfer through the matrix of single-crystalline CdS nanosheets.In addition,first-principles simulations demonstrate that the existence of rich Zn vacancies increases the energy level of the ZnS valence band maximum to construct type-II and Z-scheme mixed heterojunctions,which plays a critical role in suppressing the recombination of carriers with limited photocorrosion of CdS to enhance photocatalytic behavior. 展开更多
关键词 air condition CDS heterojunctions photocatalytic hydrogen production ZNS
下载PDF
Interfacial photoconductivity effect of type-Ⅰ and type-Ⅱ Sb2Se3/Si heterojunctions for THz wave modulation
4
作者 曹雪芹 黄媛媛 +7 位作者 席亚妍 雷珍 王静 刘昊楠 史明坚 韩涛涛 张蒙恩 徐新龙 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期82-86,共5页
An in-depth understanding of the photoconductivity and photocarrier density at the interface is of great significance for improving the performance of optoelectronic devices. However, extraction of the photoconductivi... An in-depth understanding of the photoconductivity and photocarrier density at the interface is of great significance for improving the performance of optoelectronic devices. However, extraction of the photoconductivity and photocarrier density at the heterojunction interface remains elusive. Herein, we have obtained the photoconductivity and photocarrier density of 173 nm Sb2Se3/Si(type-Ⅰ heterojunction) and 90 nm Sb2Se3/Si(type-Ⅱ heterojunction) utilizing terahertz(THz) time-domain spectroscopy(THz-TDS) and a theoretical Drude model. Since type-Ⅰ heterojunctions accelerate carrier recombination and type-Ⅱ heterojunctions accelerate carrier separation, the photoconductivity and photocarrier density of the type-Ⅱ heterojunction(21.8×10^(4)S·m^(-1),1.5 × 10^(15)cm^(-3)) are higher than those of the type-Ⅰ heterojunction(11.8×10^(4)S·m^(-1),0.8×10^(15)cm^(-3)). These results demonstrate that a type-Ⅱ heterojunction is superior to a type-Ⅰ heterojunction for THz wave modulation. This work highlights THz-TDS as an effective tool for studying photoconductivity and photocarrier density at the heterojunction interface. In turn, the intriguing interfacial photoconductivity effect provides a way to improve the THz wave modulation performance. 展开更多
关键词 PHOTOCONDUCTIVITY Sb2 Se3/Si heterojunctions THZ-TDS Drude model
下载PDF
A-D-A covalent organic-inorganic heterojunctions with enhanced photocatalytic performance for robust anti-bacteria
5
作者 Chuang Liu Yi Deng +1 位作者 Miao-Miao He Wei-Zhong Yang 《Biomedical Engineering Communications》 2023年第4期8-14,共7页
Background:Organic semiconductors have attracted much attention due to their excellent biocompatibility,tunable electronic structure,low cost,and antimicrobial phototherapy.However,owing to the high exciton binding en... Background:Organic semiconductors have attracted much attention due to their excellent biocompatibility,tunable electronic structure,low cost,and antimicrobial phototherapy.However,owing to the high exciton binding energies,organic semiconductor is constrained by their short exciton diffusion length,leading to inefficient transportation of photogenerated carriers and deficient antibacterial capability.Methods:To address this issue,a quad-channel synergistic antibacterial nano-platform of copper sulfide/organic semiconductor(CuS/IEICO-4F)heterojunctions with enhanced photocatalytic performance is designed and manufactured,which can produce localized heat and raise the levels of extracellular reactive oxygen species under near-infrared laser irradiation.Simultaneously,the released Cu2+can consume intrabacterial glutathione,destroying the defense system and ultimately leading to bacterial inactivation.Results:In vitro antibacterial experiments demonstrate that the organic-inorganic bio-heterojunctions possess the potent antibacterial capacity and effective bacterial eradication.Conclusion:This countermeasure shows great promise for application in infectious wound regeneration. 展开更多
关键词 organic semiconductor acceptor-donor-acceptor(A-D-A) heterojunctions antibacterial
下载PDF
Recent advances in NiO/Ga_(2)O_(3) heterojunctions for power electronics 被引量:1
6
作者 Xing Lu Yuxin Deng +2 位作者 Yanli Pei Zimin Chen Gang Wang 《Journal of Semiconductors》 EI CAS CSCD 2023年第6期24-38,共15页
Beta gallium oxide(β-Ga_(2)O_(3)) has attracted significant attention for applications in power electronics due to its ultrawide bandgap of ~ 4.8 eV and the large critical electric field of 8 MV/cm. These properties ... Beta gallium oxide(β-Ga_(2)O_(3)) has attracted significant attention for applications in power electronics due to its ultrawide bandgap of ~ 4.8 eV and the large critical electric field of 8 MV/cm. These properties yield a high Baliga's figures of merit(BFOM) of more than 3000. Though β-Ga_(2)O_(3) possesses superior material properties, the lack of p-type doping is the main obstacle that hinders the development of β-Ga_(2)O_(3)-based power devices for commercial use. Constructing heterojunctions by employing other p-type materials has been proven to be a feasible solution to this issue. Nickel oxide(NiO) is the most promising candidate due to its wide band gap of 3.6–4.0 eV. So far, remarkable progress has been made in NiO/β-Ga_(2)O_(3) heterojunction power devices. This review aims to summarize recent advances in the construction, characterization, and device performance of the NiO/β-Ga_(2)O_(3) heterojunction power devices. The crystallinity, band structure, and carrier transport property of the sputtered NiO/β-Ga_(2)O_(3) heterojunctions are discussed. Various device architectures, including the NiO/β-Ga_(2)O_(3) heterojunction pn diodes(HJDs), junction barrier Schottky(JBS) diodes, and junction field effect transistors(JFET), as well as the edge terminations and super-junctions based on the NiO/β-Ga_(2)O_(3) heterojunction, are described. 展开更多
关键词 gallium oxide(Ga_(2)O_(3)) nickel oxide(NiO) HETEROJUNCTION power devices
下载PDF
Novel Ni_(3)S_(4)/NiS/NC composite with multiple heterojunctions synthesized through space-confined effect for high-performance supercapacitors
7
作者 Wutao Wei Zijie Guo +4 位作者 Jiaqiang Xu Zhe Fang Jiujun Zhang Yu Jia Liwei Mi 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期318-329,共12页
The construction of heterojunctions in composite materials to optimize the electronic structures and active sites of energy materials is considered to be the promising strategy for the fabrication of high-performance ... The construction of heterojunctions in composite materials to optimize the electronic structures and active sites of energy materials is considered to be the promising strategy for the fabrication of high-performance electrochemical energy devices.In this paper,a one-step,easy processing and cost-effective technique for generating composite materials with heterojunctions was successfully developed.The composite containing Ni_(3)S_(4),NiS,and N-doped amorphous carbon(abbreviated as Ni_(3)S_(4)/NiS/NC)with multiple heterojunction nanosheets are synthesized via the space-confined effect of molten salt interface of recrystallized NaCl.Several lattice matching forms of Ni_(3)S_(4)with cubic structure and NiS with hexagonal structure are confirmed by the detailed characterization of heterogeneous interfaces.The C–S bonds are the key factor in realizing the chemical coupling between nickel sulfide and NC and constructing the stable heterojunction.Density functional theory calculations further revealed that the electronic interaction on the heterogeneous interface of Ni_(3)S_(4)/NiS can contribute to high electronic conductivity.The heterogeneous interfaces are identified to be the good electroactive region with excellent electrochemical performance.The synergistic effect of abundant active sites,the enhanced kinetic process and valid interface charge transfer channels of Ni_(3)S_(4)/NiS/NC multiple heterojunction can guarantee high reversible redox activity and high structural stability,resulting in both high specific capacitance and energy/power densities when it is used as the electrode for supercapacitors.This work offers a new avenue for the rational design of the heterojunction materials with improved electrochemical performance through space-confined effect of NaCl. 展开更多
关键词 multiple heterojunction space-confined effect electronic interaction SUPERCAPACITORS
下载PDF
Origin of the anomalous trends in band alignment of GaX/ZnGeX_2(X = N, P, As, Sb) heterojunctions 被引量:1
8
作者 Ruyue Cao Hui-Xiong Deng +1 位作者 Jun-Wei Luo Su-Huai Wei 《Journal of Semiconductors》 EI CAS CSCD 2019年第4期17-21,共5页
Utilizing first-principles band structure method, we studied the trends of electronic structures and band offsets of the common-anion heterojunctions GaX/ZnGeX_2(X = N, P, As, Sb). Here, ZnGeX_2 can be derived by atom... Utilizing first-principles band structure method, we studied the trends of electronic structures and band offsets of the common-anion heterojunctions GaX/ZnGeX_2(X = N, P, As, Sb). Here, ZnGeX_2 can be derived by atomic transmutation of two Ga atoms in GaX into one Zn atom and one Ge atom. The calculated results show that the valence band maximums(VBMs) of GaX are always lower in energy than that of ZnGeX_2, and the band offset decreases when the anion atomic number increases. The conduction band minimums(CBMs) of ZnGeX_2 are lower than that of GaX for X = P, As, and Sb, as expected. However, surprisingly, for ZnGeN2, its CBM is higher than GaN. We found that the coupling between anion p and cation d states plays a decisive role in determining the position of the valence band maximum, and the increased electronegativity of Ge relative to Ga explains the lower CBMs of ZnGeX_2 for X = P, As, and Sb. Meanwhile, due to the high ionicity, the strong coulomb interaction is the origin of the anomalous behavior for nitrides. 展开更多
关键词 GaX/ZnGeX2 heterojunctions band OFFSETS ATOMIC ORBITAL coupling
下载PDF
Growth and Characteristics of n-VO2/p-GaN based Heterojunctions 被引量:1
9
作者 ZHANG Yadong ZHANG Bingye +2 位作者 WANG Minhuan FENG Yulin BIAN Jiming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第2期342-347,共6页
n-VO2/p-GaN based oxide-nitride heterojunctions were realized by growing high quality VO2 films with precisely controlled thickness on p-GaN/sapphire substrates by oxide molecular beam epitaxy(O-MBE).The high crystall... n-VO2/p-GaN based oxide-nitride heterojunctions were realized by growing high quality VO2 films with precisely controlled thickness on p-GaN/sapphire substrates by oxide molecular beam epitaxy(O-MBE).The high crystalline quality of the n-VO2/p-GaN heterojunctions were confirmed by X-ray diffraction(XRD)and scanning electron microscope(SEM)analysis.The phase transition characteristics of the as-grown n-VO2/p-GaN heterojunctions were systematically investigated by temperature-dependent resistivity and infrared transmittance measurements.The results indicated that an excellent reversible metal-to-insulator(MIT)transition is observed with an abrupt change in both resistivity and infrared transmittance(IR)at 330 K,which was lower than the 341 K for bulk single crystal VO2.Remarkably,the resistivity-temperature curve was well consistent with that obtained from the temperature dependent IR transmittance.Meanwhile,the current-voltage characteristics originated from the n-VO2/p-GaN interface were demonstrated both before and after MIT of VO2 overlayer,which were attributed to the p-n junction behavior and Schottky contact character,respectively.The design and modulation of the n-VO2/p-GaN based heterostructure devices will benefit significantly from these achievements. 展开更多
关键词 vanadium oxide molecular beam epitaxy oxide-nitride heterojunctions metal-insulator transition
下载PDF
Annealing-enhanced interlayer coupling interaction in GaS/MoS2 heterojunctions
10
作者 孟秀清 陈书林 +1 位作者 方允樟 寇建龙 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第7期486-489,共4页
Fabrication of large-area atomically thin transition metal dichalcogenides is of critical importance for the preparation of new heterojunction-based devices.In this paper, we report the fabrication and optical investi... Fabrication of large-area atomically thin transition metal dichalcogenides is of critical importance for the preparation of new heterojunction-based devices.In this paper, we report the fabrication and optical investigation of large-scale chemical vapor deposition(CVD)-grown monolayer MoS2 and exfoliated few-layer GaS heterojunctions.As revealed by photoluminescence(PL) characterization, the as-fabricated heterojunctions demonstrated edge interaction between the two layers.The heterojunction was sensitive to annealing and showed increased interaction upon annealing at 300℃ under vacuum conditions, which led to changes in both the emission peak position and intensity resulting from the strong coupling interaction between the two layers.Low-temperature PL measurements further confirmed the strong coupling interaction.In addition, defect-related GaS luminescence was observed in our few-layer GaS, and the PL mapping provided evidence of edge interaction coupling between the two layers.These findings are interesting and provide the basis for creating new material systems with rich functionalities and novel physical effects. 展开更多
关键词 chemical vapor deposition(CVD) growth two-dimensional(2D) heterojunctions ANNEALING STRONG coupling
下载PDF
Fabrication of double-walled carbon nanotube film/TiO_2 nanotube array heterojunctions with length-dependent photoresponse for broad band photodetectors
11
作者 Ming-jie Yang Wei Liu +2 位作者 Jia-lin Sun Jin-quan Wei Jia-lin Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第3期307-312,共6页
A novel photodetector based on double-walled carbon nanotube (DWCNT) film/TiO2 nanotube array (TNA) heterojunctions was fabricated, which exhibited high photoresponse in a broad spectral range. The photoresponse o... A novel photodetector based on double-walled carbon nanotube (DWCNT) film/TiO2 nanotube array (TNA) heterojunctions was fabricated, which exhibited high photoresponse in a broad spectral range. The photoresponse of the detector was dramatically dependent on the length of the TNAs. High photocurrent-to-dark current ratio with a value of 3360 was observed in the visible range by optimizing the lengths of the TNAs. The photosensitive regions could be extended into the near-infrared range. These results reveal that DWCNT film/TNA heterojunctions show potential applications for broad band photodetectors. 展开更多
关键词 PHOTODETECTORS titanium dioxide carbon nanotubes heterojunctions
下载PDF
Characteristics of n-InAs/p-InAsSb heterojunctions with a cutoff wavelength of 4.8 μm
12
作者 GAO Yuzhu XU Baiqiao +2 位作者 WANG Zhuowei GONG Xiuying FANG Weizheng 《Rare Metals》 SCIE EI CAS CSCD 2011年第3期267-269,共3页
n-InAs/p-InAsSb heterojunctions with a cutoff wavelength of 4.8 μm were successfully grown by one-step liquid phase epitaxy (LPE) tech-nology. Scanning electron microscopy (SEM) images and X-ray diffraction (XRD... n-InAs/p-InAsSb heterojunctions with a cutoff wavelength of 4.8 μm were successfully grown by one-step liquid phase epitaxy (LPE) tech-nology. Scanning electron microscopy (SEM) images and X-ray diffraction (XRD) patterns showed the mirror smooth surface, flat interface, and good crystalline quality of the heterojunctions. Fourier transform infrared (FTIR) transmittance spectra exhibited that the cutoff wave-lengths of InAsSb epilayers reach 4.8 μm. The standard current-voltage (I-V) characteristics with a high differential-resistance-area-product at zero bias (R0A) of 1.02×10-1 Ωcm2 at room temperature indicate that the fine p-n junctions have been obtained. 展开更多
关键词 heterojunctions liquid phase epitaxy current voltage characteristics WAVELENGTH
下载PDF
CdS/Si nanofilm heterojunctions based on amorphous silicon films:Fabrication,structures,and electrical properties
13
作者 李勇 姬鹏飞 +3 位作者 宋月丽 周丰群 黄宏春 袁书卿 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第2期385-389,共5页
Shortening the distance between the depletion region and the electrodes to reduce the trapped probability of carriers is a useful approach for improving the performance of heterojunction.The CdS/Si nanofilm heterojunc... Shortening the distance between the depletion region and the electrodes to reduce the trapped probability of carriers is a useful approach for improving the performance of heterojunction.The CdS/Si nanofilm heterojunctions are fabricated by using the radio frequency magnetron sputtering method to deposit the amorphous silicon nanofilms and Cd S nanofilms on the ITO glass in turn.The relation of current density to applied voltage(I-V)shows the obvious rectification effect.From the analysis of the double logarithm I-V curve it follows that below~2.73 V the electron behaviors obey the Ohmic mechanism and above~2.73 V the electron behaviors conform to the space charge limited current(SCLC)mechanism.In the SCLC region part of the traps between the Fermi level and conduction band are occupied,and with the increase of voltage most of the traps are occupied.It is believed that Cd S/Si nanofilm heterojunction is a potential candidate in the field of nano electronic and optoelectronic devices by optimizing its fabricating procedure. 展开更多
关键词 magnetron sputtering CdS/Si nanofilm heterojunctions electron behaviors SCLC mechanisms
下载PDF
Interface Formation of Several Heterojunctions Concerning Ⅳ and Ⅱ-Ⅵ Semiconductors
14
作者 班大雁 薛剑耿 +3 位作者 方容川 徐世宏 陆尔东 徐彭寿 《Rare Metals》 SCIE EI CAS CSCD 1997年第3期1-7,共7页
The interface formations of the heterojunctions concerning Ⅳ and Ⅱ Ⅵ semiconductors were studied via synchrotron radiation photoemission spectroscopy. Experimental results show that the overlayer growths of Si... The interface formations of the heterojunctions concerning Ⅳ and Ⅱ Ⅵ semiconductors were studied via synchrotron radiation photoemission spectroscopy. Experimental results show that the overlayer growths of Si or Ge on Ge, ZnSe and ZnS substrates are in compliance with an ideal two dimensional (2D) growth mode. However, deviations from 2D mode were also observed during the interfaces formation of Ge/CdTe and Si/CdTe, and are ascribed to large lattice mismatching and interfacial reaction. 展开更多
关键词 Interface formation and heterojunctions Synchrotron radiation photoemission
下载PDF
Role of transition metal oxides in g-C_(3)N_(4)-based heterojunctions for photocatalysis and supercapacitors 被引量:7
15
作者 Liqi Bai Hongwei Huang +3 位作者 Shixin Yu Deyang Zhang Haitao Huang Yihe Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期214-235,I0007,共23页
g-C_(3)N_(4) emerges as a star 2D photocatalyst due to its unique layered structure,suitable band structure and low cost.However,its photocatalytic application is limited by the fast charge recombination and low photo... g-C_(3)N_(4) emerges as a star 2D photocatalyst due to its unique layered structure,suitable band structure and low cost.However,its photocatalytic application is limited by the fast charge recombination and low photoabsorption.Rationally designing g-C_(3)N_(4)-based heterojunction is promising for improving photocatalytic activity.Besides,g-C_(3)N_(4) exhibits great potentials in electrochemical energy storage.In view of the excellent performance of typical transition metal oxides(TMOs)in photocatalysis and energy storage,this review summarized the advances of TMOs/g-C_(3)N_(4) heterojunctions in the above two areas.Firstly,we introduce several typical TMOs based on their crystal structures and band structures.Then,we summarize different kinds of TMOs/g-C_(3)N_(4) heterojunctions,including type Ⅰ/Ⅱ heterojunction,Z-scheme,p-n junction and Schottky junction,with diverse photocatalytic applications(pollutant degradation,water splitting,CO_(2) reduction and N_(2) fixation)and supercapacitive energy storage.Finally,some promising strategies for improving the performance of TMOs/g-C_(3)N_(4) were proposed.Particularly,the exploration of photocatalysis-assisted supercapacitors was discussed. 展开更多
关键词 Transition metal oxides Carbon nitride HETEROJUNCTION PHOTOCATALYSIS SUPERCAPACITORS
下载PDF
Point-to-face contact heterojunctions:Interfacial design of 0D nanomaterials on 2D g-C_(3)N_(4)towards photocatalytic energy applications 被引量:6
16
作者 Xin-Quan Tan Sue-Faye Ng +1 位作者 Abdul Rahman Mohamed Wee-Jun Ong 《Carbon Energy》 SCIE CAS 2022年第5期665-730,共66页
Green energy generation is an indispensable task to concurrently resolve fossil fuel depletion and environmental issues to align with the global goals of achieving carbon neutrality.Photocatalysis,a process that trans... Green energy generation is an indispensable task to concurrently resolve fossil fuel depletion and environmental issues to align with the global goals of achieving carbon neutrality.Photocatalysis,a process that transforms solar energy into clean fuels through a photocatalyst,represents a felicitous direction toward sustainability.Eco-rich metal-free graphitic carbon nitride(g-C_(3)N_(4))is profiled as an attractive photocatalyst due to its fascinating properties,including excellent chemical and thermal stability,moderate band gap,visible light-active nature,and ease of fabrication.Nonetheless,the shortcomings of g-C_(3)N_(4)include fast charge recombination and limited surface-active sites,which adversely affect photocatalytic reactions.Among the modification strategies,point-to-face contact engineering of 2D g-C_(3)N_(4)with 0D nanomaterials represents an innovative and promising synergy owing to several intriguing attributes such as the high specific surface area,short effective charge-transfer pathways,and quantum confinement effects.This review introduces recent advances achieved in experimental and computational studies on the interfacial design of 0D nanostructures on 2D g-C_(3)N_(4)in the construction of point-to-face heterojunction interfaces.Notably,0D materials such as metals,metal oxides,metal sulfides,metal selenides,metal phosphides,and nonmetals on g-C_(3)N_(4)with different charge-transfer mechanisms are systematically discussed along with controllable synthesis strategies.The applications of 0D/2D g-C_(3)N_(4)-based photocatalysts are focused on solar-to-energy conversion via the hydrogen evolution reaction,the CO_(2)reduction reaction,and the N2 reduction reaction to evaluate the photocatalyst activity and elucidate reaction pathways.Finally,future perspectives for developing high-efficiency 0D/2D photocatalysts are proposed to explore potential emerging carbon nitride allotropes,large-scale production,machine learning integration,and multidisciplinary advances for technological breakthroughs. 展开更多
关键词 0D/2D heterojunction charge-transfer mechanisms g-C_(3)N_(4)nanosheets heterojunction interface PHOTOCATALYSIS solar-to-energy conversion
下载PDF
Photodetectors based on two-dimensional materials and organic thin-film heterojunctions 被引量:3
17
作者 韩嘉悦 王军 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第1期39-51,共13页
High-performance photodetectors are expected to open up revolutionary opportunities in many application fields, such as environment monitoring, military, optical communication and biomedical science. Combining two-dim... High-performance photodetectors are expected to open up revolutionary opportunities in many application fields, such as environment monitoring, military, optical communication and biomedical science. Combining two-dimensional materials(which have tunable optical absorption and high carrier mobility) with organic materials(which are abundant with low cost, high flexibility and large-area scalability) to form thin-film heterojunctions, high-responsivity photodetectors could be predicted with fast response speed in a wide spectra region.In this review, we give a comprehensive summary of photodetectors based on two-dimensional materials and organic thin-film heterojunctions, which includes hybrid assisted enhanced devices, single-layer enhanced devices, vertical heterojunction devices and tunable vertical heterojunction devices. We also give a systematic classification and perspectives on the future development of these types of photodetectors. 展开更多
关键词 PHOTODETECTORS TWO-DIMENSIONAL MATERIALS ORGANIC thin film HETEROJUNCTION
下载PDF
Low-Temperature Growing Anatase TiO2/SnO2 Multi-dimensional Heterojunctions at MXene Conductive Network for High-Efficient Perovskite Solar Cells 被引量:7
18
作者 Linsheng Huang Xiaowen Zhou +7 位作者 Rui Xue Pengfei Xu Siliang Wang Chao Xu Wei Zeng Yi Xiong Hongqian Sang Dong Liang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第3期199-217,共19页
A multi-dimensional conductive heterojunction structure,composited by TiO2,SnO2,and Ti3C2TX MXene,is facilely designed and applied as electron transport layer in efficient and stable planar perovskite solar cells.Base... A multi-dimensional conductive heterojunction structure,composited by TiO2,SnO2,and Ti3C2TX MXene,is facilely designed and applied as electron transport layer in efficient and stable planar perovskite solar cells.Based on an oxygen vacancy scramble effect,the zero-dimensional anatase TiO2 quantum dots,surrounding on two-dimensional conductive Ti3C2TX sheets,are in situ rooted on three-dimensional SnO2 nanoparticles,constructing nanoscale TiO2/SnO2 heterojunctions.The fabrication is implemented in a controlled lowtemperature anneal method in air and then in N2 atmospheres.With the optimal MXene content,the optical property,the crystallinity of perovskite layer,and internal interfaces are all facilitated,contributing more amount of carrier with effective and rapid transferring in device.The champion power conversion efficiency of resultant perovskite solar cells achieves 19.14%,yet that of counterpart is just 16.83%.In addition,it can also maintain almost 85%of its initial performance for more than 45 days in 30–40%humidity air;comparatively,the counterpart declines to just below 75%of its initial performance. 展开更多
关键词 In situ fabrication Multi-dimensional heterojunction Oxygen vacancy scramble effect Electron transport layer Perovskite solar cells
下载PDF
Carbon nanotube/silicon heterojunctions for photovoltaic applications 被引量:3
19
作者 Xiangang Hu Pengxiang Hou +1 位作者 Chang Liu Huiming Cheng 《Nano Materials Science》 CAS 2019年第3期156-172,共17页
Photovoltaic devices have rapidly developed in recent years as they seek to address the ever-increasing energy requirements and environmental issues.Due to their simple structure and easy,low-temperature fabrication,h... Photovoltaic devices have rapidly developed in recent years as they seek to address the ever-increasing energy requirements and environmental issues.Due to their simple structure and easy,low-temperature fabrication,heterojunctions of carbon nanotube(CNT)films and silicon(Si)have been used in solar cells,photodetectors and optoelectronic gas sensors.Significant progress has been made on the development of high-performance CNT/Si heterojunction devices,in particular,CNT/Si solar cells.Here,we give a comprehensive overview of state-of-theart CNT/Si heterojunction devices.The effects of the structure of the CNTs,the interface layer and the silicon structure on the performance of CNT/Si solar cells are analyzed.In addition,potential ways to further improve the performance of such photovoltaic devices are proposed.Finally,the key challenges and developing trends in CNT/Si heterojunction photovoltaic devices are discussed. 展开更多
关键词 Carbon NANOTUBE HETEROJUNCTION SOLAR cell PHOTODETECTOR Gas sensor
下载PDF
In-situ growth of ZnS/FeS heterojunctions on biomass-derived porous carbon for efficient oxygen reduction reaction 被引量:3
20
作者 Rong Jiang Xin Chen +4 位作者 Jinxia Deng Tianyu Wang Kang Wang Yanli Chen Jianzhuang Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期79-85,I0003,共8页
It is an urgent task to develop highly efficient non-noble metal electrocatalysts in the direction of ORR,but still a huge and long-term challenge.Herein,an efficient one-step pyrolysis of Sichuan pepper powder,2,2-bi... It is an urgent task to develop highly efficient non-noble metal electrocatalysts in the direction of ORR,but still a huge and long-term challenge.Herein,an efficient one-step pyrolysis of Sichuan pepper powder,2,2-bipyridine,FeCl3,Na SCN,and ZnCl2 at 900℃ provides the FeS/ZnS@N,S-C-900 hybrid catalyst.Transmission electron microscopy(TEM)images and Mott-Schottky curves clearly reveal the in-situ constructed abundant FeS/ZnS-based p-n junctions dispersed on the biomass-derived porous carbon surface of FeS/ZnS@N,S-C-900.The as-prepared FeS/ZnS@N,S-C-900 hybrid exhibits superior ORR performance in comparison with Pt/C in 0.1 M KOH with high onset(Eonset)and half-wave potentials(E1/2)of 1.00 and 0.880 V vs.RHE,large limiting current density(JL)of 5.60 mA cm-2,and robust durability and methanol tolerance.Impressively,upon the light irradiation,FeS/ZnS@N,S-C-900 produces a photocurrent as high as ca.0.3μA cm-2,resulting in further improvement over Eonset,E1/2,and JLof FeS/ZnS@N,S-C-900 to1.10 V vs.RHE,0.885 V vs.RHE,and 6.02 mA cm-2.Experiment in combination with theoretical calculations demonstrate the significant effect of FeS/ZnS heterojunction on the enhanced ORR catalytic activity of FeS/ZnS@N,S-C-900.This work is useful for the development of advanced heterojunction-based ORR catalysts for various energy conversion devices. 展开更多
关键词 Heterojunction Oxygen reduction reaction Photo-responsive electrocatalyst Biomass-derived carbon
下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部