One of the most primary challenges to achieve large-scale hydrogen generation from water electrolysis is the sluggish kinetics and noble metal dependence of cathodic hydrogen evolution reaction(HER).By considering the...One of the most primary challenges to achieve large-scale hydrogen generation from water electrolysis is the sluggish kinetics and noble metal dependence of cathodic hydrogen evolution reaction(HER).By considering the excellent water dissociation catalytic activity of Mo2C, abundant Pt/Mo2C interfaces were facilely engineered via galvanic replacement(gr) by using Mo/Mo2C nanosheets as self-sacrificed templates to alter the alkaline HER mechanism on Pt based catalyst. The rational designed interface-rich gr-Pt/Mo2C catalyst exhibited excellent activity with the overpotential to drive 10 mA/cm2 current density decreased by 18.5 mV compared with the commercial Pt/C catalyst. 34.3 mV/dec Tafel slope confirms the Volmer-Tafel HER route on gr-Pt/Mo2C in alkaline condition. Platinum utilization is calculated to be improved by 9.7 times by considered the low Pt loading in the gr-Pt/Mo2C catalyst. With its satisfied stability, the scalable gr-Pt/Mo2C catalyst shows promising application potential in industrial electrolysis systems.展开更多
基金financial support from the National Natural Science Foundation of China (Nos.21875224 and 21703211)the Natural Science Foundation of Zhejiang Province (No.LGG19B030001)。
文摘One of the most primary challenges to achieve large-scale hydrogen generation from water electrolysis is the sluggish kinetics and noble metal dependence of cathodic hydrogen evolution reaction(HER).By considering the excellent water dissociation catalytic activity of Mo2C, abundant Pt/Mo2C interfaces were facilely engineered via galvanic replacement(gr) by using Mo/Mo2C nanosheets as self-sacrificed templates to alter the alkaline HER mechanism on Pt based catalyst. The rational designed interface-rich gr-Pt/Mo2C catalyst exhibited excellent activity with the overpotential to drive 10 mA/cm2 current density decreased by 18.5 mV compared with the commercial Pt/C catalyst. 34.3 mV/dec Tafel slope confirms the Volmer-Tafel HER route on gr-Pt/Mo2C in alkaline condition. Platinum utilization is calculated to be improved by 9.7 times by considered the low Pt loading in the gr-Pt/Mo2C catalyst. With its satisfied stability, the scalable gr-Pt/Mo2C catalyst shows promising application potential in industrial electrolysis systems.