The results of molecular dynamics calculations on the interfacial energies and atomic structures of Ag/Ni and Cu/Ni interfaces are presented. Calculation on Ag/Ni interfaces with low-index planes shows that those cont...The results of molecular dynamics calculations on the interfacial energies and atomic structures of Ag/Ni and Cu/Ni interfaces are presented. Calculation on Ag/Ni interfaces with low-index planes shows that those containing the (111) plane have the lowest energies, which is in agreement with the experiments. Comparing surface energy with interfacial energy, it is found the order of the interfacial energies of Ag/Ni and Cu/Ni containing the planes fall in the same order as solid-vapor surface energies of Ag, Cu and Ni. In this MD simulation, the relaxed atomic structure and dislocation network of (110)_Ag||(110)Ni interface are coincident to HREM observations.展开更多
基金The authors would like to acknowledge the financial support by the Special Funds for the Major State Basic Research Projects of China(Grant No.G20000670104).
文摘The results of molecular dynamics calculations on the interfacial energies and atomic structures of Ag/Ni and Cu/Ni interfaces are presented. Calculation on Ag/Ni interfaces with low-index planes shows that those containing the (111) plane have the lowest energies, which is in agreement with the experiments. Comparing surface energy with interfacial energy, it is found the order of the interfacial energies of Ag/Ni and Cu/Ni containing the planes fall in the same order as solid-vapor surface energies of Ag, Cu and Ni. In this MD simulation, the relaxed atomic structure and dislocation network of (110)_Ag||(110)Ni interface are coincident to HREM observations.