A strain capable of phenol degradation, hetemtrophic nitrification and aerobic denitrification was isolated from activated sludge of coking-plant wastewater ponds under aerobic condition. Based on its morphology, phys...A strain capable of phenol degradation, hetemtrophic nitrification and aerobic denitrification was isolated from activated sludge of coking-plant wastewater ponds under aerobic condition. Based on its morphology, physiology, biochemical analysis and phylogenetic characteristics, the isolate was identified as Diaphorobacter sp. PD-7. Biodegradation tests of phenol showed that the maximum phenol degradation occurred at the late phase of exponential growth stages, with 1400 mg·L^-1 phenol completely degraded within 85 h. Diaphorobacter sp. PD-7 accumulated a vast quantity of phenol hydroxylase in this physiological phase, ensuring that the cells quickly utilize phenol as a sole carbon and energy source. The kinetic behavior ofDiaphorobacter sp. PD-7 in batch cultures was investigated over a wide range of initial phenol concentrations (0-1400mg·L^-1) by using the Haldane model, which adequately describes the dynamic behavior of phenol biodegradation by strain Diaphombacter sp. PD-7. At initial phenol concentration of 1400mg· L^-l, batch experiments (0.25 L flask) of nitrogen removal under aerobic condition gave almost entirely removal of 120.69mg· L^- 1 ammonium nitrogen within 75 h, while nitrate nitrogen removal reached 91% within 65 h. Moreover, hydroxylamine oxidase, periplasmic nitrate reductase and nitrite reductase were successfully expressed in the isolate.展开更多
A novel salt-tolerant heterotrophic nitrification and aerobic denitrification(HN-AD)bacterium was isolated and identified as Halomonas venusta TJPU05(H.venusta TJPU05).The nitrogen removal performance of H.venusta TJP...A novel salt-tolerant heterotrophic nitrification and aerobic denitrification(HN-AD)bacterium was isolated and identified as Halomonas venusta TJPU05(H.venusta TJPU05).The nitrogen removal performance of H.venusta TJPU05 in simulated water(SW)with sole or mixed nitrogen sources and in actual wastewater(AW)with high concentration of salt and nitrogen was investigated.The results showed that 86.12%of NH_(4)^(+)-N,95.68%of NO_(3)^(-)-N,100%of NO_(2)^(-)-N and 84.57%of total nitrogen(TN)could be removed from SW with sole nitrogen sources within 24 h at the utmost.H.venusta TJPU05 could maximally remove 84.06%of NH_(4)^(+)-N,92.33%of NO_(3)^(-)-N,92.9%of NO_(2)^(-)-N and 77.73%of TN from SW with mixed nitrogen source when the salinity was above 8%.The application of H.venusta TJPU05 in treating AW with high salt and high ammonia nitrogen led to removal efficiencies of 50.96%,47.28%and 43.19%for NH_(4)^(+)-N,NO_(3)^(-)-N and TN respectively without any optimization.Furthermore,the activities of nitrogen removal–related enzymes of the strain were also investigated.The successful detection of high level activities of ammonia oxygenase(AMO),hydroxylamine oxidase(HAO),nitrate reductase(NAR)and nitrite reductase(NIR)enzymes under high salinity condition further proved the HN-AD and salt-tolerance capacity of H.venusta TJPU05.These results demonstrated that the H.venusta TJPU05 has great potential in treating high-salinity nitrogenous wastewater.展开更多
The study presented the method for isolating the heterotrophic nitrifiers and the characterization of heterotrophic nitrification. Continuous tests via a membrane bioreactor (MBR) were operated under the controlled co...The study presented the method for isolating the heterotrophic nitrifiers and the characterization of heterotrophic nitrification. Continuous tests via a membrane bioreactor (MBR) were operated under the controlled conditions to proliferate the nitrifiers. Heterotrophic nitrifying bacteria were isolated from the system in which the efficiency of total nitrogen(TN) removal was up to 80%. Since no autotrophic ammonium and nitrite oxidizers could be detected by fluorescence in situ hybridization(FISH), oxidized-N production was unlikely to be catalyzed by autotrophic nitrifiers during the heterotrophic nitrifiers' isolation in this study. The batch test results indicate that the isolated heterotrophic bacteria were able to nitrify. After 3 weeks incubation, the efficiencies of the COD removal by the three isolated bacterial strains B1, B2, and B3 were 52 6%, 71 7%, and 77 7%, respectively. The efficiencies of the TN removal by B1, B2, and B3 were 35 6%, 61 2% and 68 7%, respectively.展开更多
In a high concentration substrate medium, a heterotrophic bacterium with high removal efficiency of ammonium, named W1, was isolated from activated sludge of coking wastewater treatment facility. The bacterium was Gra...In a high concentration substrate medium, a heterotrophic bacterium with high removal efficiency of ammonium, named W1, was isolated from activated sludge of coking wastewater treatment facility. The bacterium was Gram-negative, rod-shaped, and identified preliminarily as Alcaligenes sp. according to its morphological and physiological properties and its 16S rRNA gene sequence analysis. In the high concentration ammonium medium (400 mg·L 1 4 NH -N), the effects of C source, N source, C/N ratio and initial pH of medium on ammonium removal were investigated in order to determine the optimal condition for strain W1. The maximum ammonium removal was around 95% in 4 days in an improved medium. The production of N 2 gas was examined in a closed system that was full of pure oxygen at the beginning. N 2 gas was detected in the system after 4 days of cultivation, which further testified that strain W1 has heterotrophic nitrification and aerobic denitrification abilities simultaneously.展开更多
Objective To characterize the heterotrophic nitrifying bacteria. Methods The bacteria were isolated from membrane bioreactor for treating synthetic wastewater using the method newly introduced in this study. Fluoresce...Objective To characterize the heterotrophic nitrifying bacteria. Methods The bacteria were isolated from membrane bioreactor for treating synthetic wastewater using the method newly introduced in this study. Fluorescence in situ hybridization (FISH) was used to validate the nonexistence of autotrophic ammonia oxidizers and nitrite oxidizers. Batch tests were carried out to investigate the capability of heterotrophic nitrification by the pure culture. Phylogenetic analysis of the pure culture was performed. Results A heterotrophic nitrifier, named Bacillus sp. LY, was newly isolated from the membrane bioreactor system in which the efficiency of TN removal was up to 80%. After 24-day, incubation, the removal efficiency of COD by Bacillus sp. LY was 71.7 %. The ammonium nitrogen removal rate after assimilation nearly ceased by Bacillus sp. LY was 74.7% The phylogenetic tree of Bacillus sp. LY and the neighbouring nitrifiers were given. Conclusions The batch test results indicate that Bacillus sp. LY can utilize the organic carbon as the source of assimilation when it grows on glucose and ammonium chloride medium accompanying the formation of oxidized-nitrogen. It also can denitrify nitrate while nitrifying. Bacillus sp. LY may become a new bacterial resource for heterotrophic nitrification and play a bioremediation role in nutrient removal.展开更多
Nitrification is a key step in the global nitrogen cycle.Compared with autotrophic nitrification,heterotrophic nitrification remains poorly understood.In this study,Halomonas venusta MA-ZP17-13,isolated from seawater ...Nitrification is a key step in the global nitrogen cycle.Compared with autotrophic nitrification,heterotrophic nitrification remains poorly understood.In this study,Halomonas venusta MA-ZP17-13,isolated from seawater in shrimp aquaculture (Penaeus vannamei),could simultaneously undertake nitrification and denitrification.With the initial ammonium concentration at 100 mg/L,the maximum ammonium-nitrogen removal rate reached98.7%under the optimal conditions including C/N concentration ratio at 5.95,p H at 8.93,and Na Cl at 2.33%.The corresponding average removal rate was 1.37 mg/(L·h)(according to nitrogen) in 3 d at 11.2℃.By whole genome sequencing and analysis,nitrification-and denitrification-related genes were identified,including ammonia monooxygenase,nitrate reductase,nitrite reductase,nitric oxide dioxygenase and nitric oxide synthase;while no gene encoding hydroxylamine oxidase was identified,it implied the existence of a novel nitrification pathway from hydroxylamine to nitrate.These results indicate heterotrophic bacterium H.venusta MA-ZP17-13 can undertake simultaneous nitrification and denitrification at low temperature and has potential for NH_(4)^(+)-N/NH_(3)-N removal in marine aquaculture systems.展开更多
The study presented the method for isolating the heterotrophic nitrifiers and the characterization of heterotrophic nitrification. When influent Ammonia nitrogen concentration was 42. 78 - 73. 62 mg/L. The average amm...The study presented the method for isolating the heterotrophic nitrifiers and the characterization of heterotrophic nitrification. When influent Ammonia nitrogen concentration was 42. 78 - 73. 62 mg/L. The average ammonia nitrogen removal rate was 81.32% from the bioceramics reactor. Sodium acetate and ammonium chloride were used as carbon and nitrogen source. The COD removal rates by microorganisms of strain wgy21 and wgy36 were 56.1% and 45.45%, respectively. The TN removal rates by microorganisms of strain wgy21 and wgy36 were 65.85% and 67. 98%, respectively. At the same time, the concentration of ammonium nitrogen was with the removal rates of 75.25% and 84.96%, and it also had the function of producing NO2 - N. Sodium acetate and sodium nitrite were used as carbon and nitrogen source. Through the 12 days of the aerobic culture, the COD femoral rates by microorganisms of strain wgy21 and wgy36 were 29.25% and 22.08%, respectively. NO2 -N concentration decreased slowly. Comparison, similarity of wgy21 and many Acinetobacter sp. ≥99%, similarity of wgy36 and many Acinetobacter sp. ≥99%. Refer to routine physiologicalbiochemical characteristic determination, further evidences showed that wgy21 and wgy36 belong to Acinetobacter sp., respectively.展开更多
A method about the isolation of heterotrophic nitrosobactria and the characteristics of heterotrophic nitrosobactria were studied.It can be seen from the fluorescence in situ hybridization results of the bio-membrane ...A method about the isolation of heterotrophic nitrosobactria and the characteristics of heterotrophic nitrosobactria were studied.It can be seen from the fluorescence in situ hybridization results of the bio-membrane sample from the bio-ceramic reactor,the spots of green nitrosobacteria are obviously more than those of orange nitrobacteria.Two heterotrophic nitrobacteria were isolated from the bio-ceramic reactor.By sequencing 16SrDNA and establishing the phylogenic tree,they were identified physiologically and biochemically as Pseudomonas sp..After 12 d,the COD removal efficiency of wgy55 and wgy68 were 45.03% and 50.85%,the NH4-N removal efficiency of them were 80.12% and 85.93%,and the TN removal efficiency of them were 69.71% and 64.7%.The final concentration of NO2-N of wgy55 and wgy68 was 0.753 mg/L and 0.601 mg/L,and that of NO3-N was 3.21 mg/L and 3.38 mg/L.These results show that wgy55 and wgy68 have the capability of nitrification and they are heterotrophic nitrobacteria.展开更多
The ammonium exceedance discharge from sewage treatment plants has a great risk to the stable operation of subsequent constructed wetlands(CWs).The effects of high ammonium shocks on submerged macrophytes and epiphyti...The ammonium exceedance discharge from sewage treatment plants has a great risk to the stable operation of subsequent constructed wetlands(CWs).The effects of high ammonium shocks on submerged macrophytes and epiphytic biofilms on the leaves of submerged macrophytes in CWs were rarely mentioned in previous studies.In this paper,the 16S rRNA sequencing method was used to investigate the variation of the microbial communities in biofilms on the leaves of Vallisneria natans plants while the growth characteristics of V.natans plants were measured at different initial ammonium concentrations.The results demonstrated that the total chlorophyll and soluble sugar synthesis of V.natans plants decreased by 51.45%and 57.16%,respectively,and malondialdehyde content increased threefold after8 days if the initial NH_(4)^(+)-N concentration was more than 5 mg/L.Algal density,bacterial quantity,dissolved oxygen,and pH increased with high ammonium shocks.The average removal efficiencies of total nitrogen and NH_(4)^(+)-N reached 73.26%and 83.94%,respectively.The heat map and relative abundance analysis represented that the relative abundances of phyla Proteobacteria,Cyanobacteria,and Bacteroidetes increased.The numbers of autotrophic nitrifiers and heterotrophic nitrification aerobic denitrification(HNAD)bacteria expanded in biofilms.In particular,HNAD bacteria of Flavobacterium,Hydrogenophaga,Acidovorax,Acinetobacter,Pseudomonas,Aeromonas,and Azospira had higher abundances than autotrophic nitrifiers because there were organic matters secreted from declining leaves of V.natans plants.The analysis of the nitrogen metabolic pathway showed aerobic denitrification was the main nitrogen removal pathway.Thus,the nitrification and denitrification bacterial communities increased in epiphytic biofilms on submerged macrophytes in constructed wetlands while submerged macrophytes declined under ammonium shock loading.展开更多
In the tropics,frequent nitrogen(N)fertilization of grazing areas can potentially increase nitrous oxide(N_(2)O)emissions.The application of nitrification inhibitors has been reported as an effective management practi...In the tropics,frequent nitrogen(N)fertilization of grazing areas can potentially increase nitrous oxide(N_(2)O)emissions.The application of nitrification inhibitors has been reported as an effective management practice for potentially reducing N loss from the soil-plant system and improving N use efficiency(NUE).The aim of this study was to determine the effect of the co-application of nitrapyrin(a nitrification inhibitor,NI)and urea in a tropical Andosol on the behavior of N and the emissions of N_(2)O from autotrophic and heterotrophic nitrification.A greenhouse experiment was performed using a soil(pH 5.9,organic matter content 78 g kg^(-1),and N 5.6 g kg^(-1))sown with Cynodon nlemfuensis at 60%water-filled pore space to quantify total N_(2)O emissions,N_(2)O derived from fertilizer,soil ammonium(NH_(4)^(+))and nitrate(NO_(3)^(-)),and NUE.The study included treatments that received deionized water only(control,NI).No significant differences were observed in soil NH_(4)^(+)content between the UR and UR+NI treatments,probably because of soil mineralization and NO_(3)^(-)produced by heterotrophic nitrification,which is not effectively inhibited by nitrapyrin.After 56 d,N_(2)O emissions in UR(0.51±0.12 mg N_(2)O-N concluded that the soil organic N mineralization and heterotrophic nitrification are the main processes of NH_(4)^(+)and NO_(3)^(-)production.Additionally,it was found that N_(2)O emissions were partially a consequence of the direct oxidation of the soil's organic N via heterotrophic nitrification coupled to denitrification.Finally,the results suggest that nitrapyrin would likely exert significant mitigation on N_(2)O emissions only if a substantial N surplus exists in soils with high organic matter content.展开更多
基金the National Natural Science Foundation of China(51378330 and51408396)the Natural Science Foundation of Shanxi Province(2013021023-3)
文摘A strain capable of phenol degradation, hetemtrophic nitrification and aerobic denitrification was isolated from activated sludge of coking-plant wastewater ponds under aerobic condition. Based on its morphology, physiology, biochemical analysis and phylogenetic characteristics, the isolate was identified as Diaphorobacter sp. PD-7. Biodegradation tests of phenol showed that the maximum phenol degradation occurred at the late phase of exponential growth stages, with 1400 mg·L^-1 phenol completely degraded within 85 h. Diaphorobacter sp. PD-7 accumulated a vast quantity of phenol hydroxylase in this physiological phase, ensuring that the cells quickly utilize phenol as a sole carbon and energy source. The kinetic behavior ofDiaphorobacter sp. PD-7 in batch cultures was investigated over a wide range of initial phenol concentrations (0-1400mg·L^-1) by using the Haldane model, which adequately describes the dynamic behavior of phenol biodegradation by strain Diaphombacter sp. PD-7. At initial phenol concentration of 1400mg· L^-l, batch experiments (0.25 L flask) of nitrogen removal under aerobic condition gave almost entirely removal of 120.69mg· L^- 1 ammonium nitrogen within 75 h, while nitrate nitrogen removal reached 91% within 65 h. Moreover, hydroxylamine oxidase, periplasmic nitrate reductase and nitrite reductase were successfully expressed in the isolate.
基金supported by the National Natural Science Foundation of China(Grant No.22075207)the Training Program of Innovation and Entrepreneurship for Undergraduates(No.201910058052).
文摘A novel salt-tolerant heterotrophic nitrification and aerobic denitrification(HN-AD)bacterium was isolated and identified as Halomonas venusta TJPU05(H.venusta TJPU05).The nitrogen removal performance of H.venusta TJPU05 in simulated water(SW)with sole or mixed nitrogen sources and in actual wastewater(AW)with high concentration of salt and nitrogen was investigated.The results showed that 86.12%of NH_(4)^(+)-N,95.68%of NO_(3)^(-)-N,100%of NO_(2)^(-)-N and 84.57%of total nitrogen(TN)could be removed from SW with sole nitrogen sources within 24 h at the utmost.H.venusta TJPU05 could maximally remove 84.06%of NH_(4)^(+)-N,92.33%of NO_(3)^(-)-N,92.9%of NO_(2)^(-)-N and 77.73%of TN from SW with mixed nitrogen source when the salinity was above 8%.The application of H.venusta TJPU05 in treating AW with high salt and high ammonia nitrogen led to removal efficiencies of 50.96%,47.28%and 43.19%for NH_(4)^(+)-N,NO_(3)^(-)-N and TN respectively without any optimization.Furthermore,the activities of nitrogen removal–related enzymes of the strain were also investigated.The successful detection of high level activities of ammonia oxygenase(AMO),hydroxylamine oxidase(HAO),nitrate reductase(NAR)and nitrite reductase(NIR)enzymes under high salinity condition further proved the HN-AD and salt-tolerance capacity of H.venusta TJPU05.These results demonstrated that the H.venusta TJPU05 has great potential in treating high-salinity nitrogenous wastewater.
文摘The study presented the method for isolating the heterotrophic nitrifiers and the characterization of heterotrophic nitrification. Continuous tests via a membrane bioreactor (MBR) were operated under the controlled conditions to proliferate the nitrifiers. Heterotrophic nitrifying bacteria were isolated from the system in which the efficiency of total nitrogen(TN) removal was up to 80%. Since no autotrophic ammonium and nitrite oxidizers could be detected by fluorescence in situ hybridization(FISH), oxidized-N production was unlikely to be catalyzed by autotrophic nitrifiers during the heterotrophic nitrifiers' isolation in this study. The batch test results indicate that the isolated heterotrophic bacteria were able to nitrify. After 3 weeks incubation, the efficiencies of the COD removal by the three isolated bacterial strains B1, B2, and B3 were 52 6%, 71 7%, and 77 7%, respectively. The efficiencies of the TN removal by B1, B2, and B3 were 35 6%, 61 2% and 68 7%, respectively.
基金Supported by the National Natural Science Foundation of China (51078252)the International Cooperation Projects of Shanxi Province (2010081018)the Natural Science Foundation of Shanxi Province (2010011016-1)
文摘In a high concentration substrate medium, a heterotrophic bacterium with high removal efficiency of ammonium, named W1, was isolated from activated sludge of coking wastewater treatment facility. The bacterium was Gram-negative, rod-shaped, and identified preliminarily as Alcaligenes sp. according to its morphological and physiological properties and its 16S rRNA gene sequence analysis. In the high concentration ammonium medium (400 mg·L 1 4 NH -N), the effects of C source, N source, C/N ratio and initial pH of medium on ammonium removal were investigated in order to determine the optimal condition for strain W1. The maximum ammonium removal was around 95% in 4 days in an improved medium. The production of N 2 gas was examined in a closed system that was full of pure oxygen at the beginning. N 2 gas was detected in the system after 4 days of cultivation, which further testified that strain W1 has heterotrophic nitrification and aerobic denitrification abilities simultaneously.
基金supported by the National Natural Science Foundation of China (No. 20176027).
文摘Objective To characterize the heterotrophic nitrifying bacteria. Methods The bacteria were isolated from membrane bioreactor for treating synthetic wastewater using the method newly introduced in this study. Fluorescence in situ hybridization (FISH) was used to validate the nonexistence of autotrophic ammonia oxidizers and nitrite oxidizers. Batch tests were carried out to investigate the capability of heterotrophic nitrification by the pure culture. Phylogenetic analysis of the pure culture was performed. Results A heterotrophic nitrifier, named Bacillus sp. LY, was newly isolated from the membrane bioreactor system in which the efficiency of TN removal was up to 80%. After 24-day, incubation, the removal efficiency of COD by Bacillus sp. LY was 71.7 %. The ammonium nitrogen removal rate after assimilation nearly ceased by Bacillus sp. LY was 74.7% The phylogenetic tree of Bacillus sp. LY and the neighbouring nitrifiers were given. Conclusions The batch test results indicate that Bacillus sp. LY can utilize the organic carbon as the source of assimilation when it grows on glucose and ammonium chloride medium accompanying the formation of oxidized-nitrogen. It also can denitrify nitrate while nitrifying. Bacillus sp. LY may become a new bacterial resource for heterotrophic nitrification and play a bioremediation role in nutrient removal.
基金The COMRA Program under contract No. DY135-B2-01the Xiamen Ocean Economic Innovation and Development Demonstration Project under contract No. 16PZP001SF16the National Infrastructure of Natural Resources for Science and Technology Program of China under contract No. NIMR-2017-9。
文摘Nitrification is a key step in the global nitrogen cycle.Compared with autotrophic nitrification,heterotrophic nitrification remains poorly understood.In this study,Halomonas venusta MA-ZP17-13,isolated from seawater in shrimp aquaculture (Penaeus vannamei),could simultaneously undertake nitrification and denitrification.With the initial ammonium concentration at 100 mg/L,the maximum ammonium-nitrogen removal rate reached98.7%under the optimal conditions including C/N concentration ratio at 5.95,p H at 8.93,and Na Cl at 2.33%.The corresponding average removal rate was 1.37 mg/(L·h)(according to nitrogen) in 3 d at 11.2℃.By whole genome sequencing and analysis,nitrification-and denitrification-related genes were identified,including ammonia monooxygenase,nitrate reductase,nitrite reductase,nitric oxide dioxygenase and nitric oxide synthase;while no gene encoding hydroxylamine oxidase was identified,it implied the existence of a novel nitrification pathway from hydroxylamine to nitrate.These results indicate heterotrophic bacterium H.venusta MA-ZP17-13 can undertake simultaneous nitrification and denitrification at low temperature and has potential for NH_(4)^(+)-N/NH_(3)-N removal in marine aquaculture systems.
基金National Natural Science Foundation of China(NO.50521140075)
文摘The study presented the method for isolating the heterotrophic nitrifiers and the characterization of heterotrophic nitrification. When influent Ammonia nitrogen concentration was 42. 78 - 73. 62 mg/L. The average ammonia nitrogen removal rate was 81.32% from the bioceramics reactor. Sodium acetate and ammonium chloride were used as carbon and nitrogen source. The COD removal rates by microorganisms of strain wgy21 and wgy36 were 56.1% and 45.45%, respectively. The TN removal rates by microorganisms of strain wgy21 and wgy36 were 65.85% and 67. 98%, respectively. At the same time, the concentration of ammonium nitrogen was with the removal rates of 75.25% and 84.96%, and it also had the function of producing NO2 - N. Sodium acetate and sodium nitrite were used as carbon and nitrogen source. Through the 12 days of the aerobic culture, the COD femoral rates by microorganisms of strain wgy21 and wgy36 were 29.25% and 22.08%, respectively. NO2 -N concentration decreased slowly. Comparison, similarity of wgy21 and many Acinetobacter sp. ≥99%, similarity of wgy36 and many Acinetobacter sp. ≥99%. Refer to routine physiologicalbiochemical characteristic determination, further evidences showed that wgy21 and wgy36 belong to Acinetobacter sp., respectively.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50521140075)
文摘A method about the isolation of heterotrophic nitrosobactria and the characteristics of heterotrophic nitrosobactria were studied.It can be seen from the fluorescence in situ hybridization results of the bio-membrane sample from the bio-ceramic reactor,the spots of green nitrosobacteria are obviously more than those of orange nitrobacteria.Two heterotrophic nitrobacteria were isolated from the bio-ceramic reactor.By sequencing 16SrDNA and establishing the phylogenic tree,they were identified physiologically and biochemically as Pseudomonas sp..After 12 d,the COD removal efficiency of wgy55 and wgy68 were 45.03% and 50.85%,the NH4-N removal efficiency of them were 80.12% and 85.93%,and the TN removal efficiency of them were 69.71% and 64.7%.The final concentration of NO2-N of wgy55 and wgy68 was 0.753 mg/L and 0.601 mg/L,and that of NO3-N was 3.21 mg/L and 3.38 mg/L.These results show that wgy55 and wgy68 have the capability of nitrification and they are heterotrophic nitrobacteria.
基金supported by the National Special Program of Water Environment(No.2017ZX07204002)the National Natural Science Foundation of China(No.41871082)。
文摘The ammonium exceedance discharge from sewage treatment plants has a great risk to the stable operation of subsequent constructed wetlands(CWs).The effects of high ammonium shocks on submerged macrophytes and epiphytic biofilms on the leaves of submerged macrophytes in CWs were rarely mentioned in previous studies.In this paper,the 16S rRNA sequencing method was used to investigate the variation of the microbial communities in biofilms on the leaves of Vallisneria natans plants while the growth characteristics of V.natans plants were measured at different initial ammonium concentrations.The results demonstrated that the total chlorophyll and soluble sugar synthesis of V.natans plants decreased by 51.45%and 57.16%,respectively,and malondialdehyde content increased threefold after8 days if the initial NH_(4)^(+)-N concentration was more than 5 mg/L.Algal density,bacterial quantity,dissolved oxygen,and pH increased with high ammonium shocks.The average removal efficiencies of total nitrogen and NH_(4)^(+)-N reached 73.26%and 83.94%,respectively.The heat map and relative abundance analysis represented that the relative abundances of phyla Proteobacteria,Cyanobacteria,and Bacteroidetes increased.The numbers of autotrophic nitrifiers and heterotrophic nitrification aerobic denitrification(HNAD)bacteria expanded in biofilms.In particular,HNAD bacteria of Flavobacterium,Hydrogenophaga,Acidovorax,Acinetobacter,Pseudomonas,Aeromonas,and Azospira had higher abundances than autotrophic nitrifiers because there were organic matters secreted from declining leaves of V.natans plants.The analysis of the nitrogen metabolic pathway showed aerobic denitrification was the main nitrogen removal pathway.Thus,the nitrification and denitrification bacterial communities increased in epiphytic biofilms on submerged macrophytes in constructed wetlands while submerged macrophytes declined under ammonium shock loading.
基金supported by the International Atomic Energy Agency (IAEA), Vienna, Austria through a Coordinated Research Project (No. CRP D1.50.16) of Soil and Water Management and Crop Nutrition Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agricultureby the University of Costa Rica (No. VI-802-B7-505)
文摘In the tropics,frequent nitrogen(N)fertilization of grazing areas can potentially increase nitrous oxide(N_(2)O)emissions.The application of nitrification inhibitors has been reported as an effective management practice for potentially reducing N loss from the soil-plant system and improving N use efficiency(NUE).The aim of this study was to determine the effect of the co-application of nitrapyrin(a nitrification inhibitor,NI)and urea in a tropical Andosol on the behavior of N and the emissions of N_(2)O from autotrophic and heterotrophic nitrification.A greenhouse experiment was performed using a soil(pH 5.9,organic matter content 78 g kg^(-1),and N 5.6 g kg^(-1))sown with Cynodon nlemfuensis at 60%water-filled pore space to quantify total N_(2)O emissions,N_(2)O derived from fertilizer,soil ammonium(NH_(4)^(+))and nitrate(NO_(3)^(-)),and NUE.The study included treatments that received deionized water only(control,NI).No significant differences were observed in soil NH_(4)^(+)content between the UR and UR+NI treatments,probably because of soil mineralization and NO_(3)^(-)produced by heterotrophic nitrification,which is not effectively inhibited by nitrapyrin.After 56 d,N_(2)O emissions in UR(0.51±0.12 mg N_(2)O-N concluded that the soil organic N mineralization and heterotrophic nitrification are the main processes of NH_(4)^(+)and NO_(3)^(-)production.Additionally,it was found that N_(2)O emissions were partially a consequence of the direct oxidation of the soil's organic N via heterotrophic nitrification coupled to denitrification.Finally,the results suggest that nitrapyrin would likely exert significant mitigation on N_(2)O emissions only if a substantial N surplus exists in soils with high organic matter content.