期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Soil heterotrophic respiration in Casuarina equisetifolia plantation at different stand ages 被引量:2
1
作者 肖胜生 叶功富 +2 位作者 张立华 金钊 刘丽香 《Journal of Forestry Research》 SCIE CAS CSCD 2009年第4期301-306,I0004,共7页
The soil respiration rates (Rh) in 6-year-old (young), 17-year-old (middle-age), 31-year-old (mature) Casuarina equisetifolia coastal plantations were measured using an LICOR-8100 automated soil CO2 flux syste... The soil respiration rates (Rh) in 6-year-old (young), 17-year-old (middle-age), 31-year-old (mature) Casuarina equisetifolia coastal plantations were measured using an LICOR-8100 automated soil CO2 flux system from May 2006 to April 2007. Results show that Rh displayed an obvious seasonal pattern across the observed years. The maximum values of Rh occurred at June and July and the minimum at December and January. Soil temperature and soil moisture as well as their interaction had significant effects on the monthly dynamics of Rh. The analysis by one-way ANOVA showed that Rh had a significantly exponential relation (p〈0.05) to soil temperature at soil depth of 5 cm, and had a linear relation (p〈0.05) to soil water content of the upper 20 cm. The result estimated by the two-factor model shows that soil temperature at soil depth of 5 cm and soil moisture at soil depth of 20 cm could explain 68.9%-91.9% of seasonal variations in Rh. The or- der of Rh rates between different stand ages was middle-age plantation〉mature plantation〉young-age plantation. With the increase of growth age of plantation, the Q10 of Rh increased. The contribution of Rh to total soil surface CO2 flux was 71.89%, 71.02% and 73.53% for the young, middle-age and mature plantation, respectively. It was estimated that the annual CO2 fluxes from Rh were 29.07, 38.964 and 30.530 t.ha^-1.a^-1 for the young, middle-age and mature plantation, respectively. 展开更多
关键词 soil heterotrophic respiration coastal plantation stand age Casuarina equiset(folia
下载PDF
Interannual Variation in Terrestrial Ecosystem Carbon Fluxes in China from 1981 to 1998 被引量:34
2
作者 曹明奎 陶波 +2 位作者 李克让 邵雪梅 Stephen D PRIENCE 《Acta Botanica Sinica》 CSCD 2003年第5期552-560,共9页
A dynamic biogeochemical model was used to estimate the responses of China's terrestrial net primary productivity (NPP), soil heterotrophic respiration (HR) and net ecosystem productivity (NEP) to changes in clima... A dynamic biogeochemical model was used to estimate the responses of China's terrestrial net primary productivity (NPP), soil heterotrophic respiration (HR) and net ecosystem productivity (NEP) to changes in climate and atmospheric CO2 from 1981 to 1998. Results show that China's total NPP varied between 2.89 and 3.37 Gt C/a and had an increasing trend by 0.32% per year, HR varied between 2.89 and 3.21 Gt C/a and grew by 0.40% per year, Annual NEP varied between -0.32 and 0.25 Gt C but had no statistically significant interannual trend. The positive mean NEP indicates that China's terrestrial ecosystems were taking up carbon with a total carbon sequestration of 1.22 Gt C during the analysis period. The terrestrial NEP in China related to climate and atmospheric CO2 increases accounted for about 10% of the world's total and was similar to the level of the United States in the same period. The mean annual NEP for the analysis period was near to zero for most of the regions in China, but significantly positive NEP occurred in Northeast China Plain, the southeastern Xizang (Tibet) and Huang-Huai-Hai Plain, and negative NEP occurred in the Da Hinggan Mountains, Xiao Hinggan Mountains, Loess Plateau and Yunnan-Guizhou Plateau. China's climate at the time was warm and dry relative to other periods, so the estimated NEP is probably lower than the average level. China's terrestrial NEP may increase if climate becomes wetter but is likely to continue to decrease if the present warming and drying trend sustains. 展开更多
关键词 China net primary productivity (NPP) soil heterotrophic respiration (HR) net ecosystem productivity (NEP) climate change
下载PDF
Net ecosystem carbon exchange for Bermuda grass growing in mesocosms as affected by irrigation frequency 被引量:1
3
作者 Yuan LI Gabriel Y.K.MOINET +2 位作者 Timothy J.CLOUGH John E.HUNT David WHITEHEAD 《Pedosphere》 SCIE CAS CSCD 2022年第3期393-401,共9页
Intensification of grazed grasslands following conversion from dryland to irrigated farming has the potential to alter ecosystem carbon(C)cycling and affect components of carbon dioxide(CO_(2))exchange that could lead... Intensification of grazed grasslands following conversion from dryland to irrigated farming has the potential to alter ecosystem carbon(C)cycling and affect components of carbon dioxide(CO_(2))exchange that could lead to either net accumulation or loss of soil C.While there are many studies on the effect of water availability on biomass production and soil C stocks,much less is known about the effect of the frequency of water inputs on the components of CO_(2)exchange.We grew Bermuda grass(Cynodon dactylon L.)in mesocosms under irrigation frequencies of every day(I_(1) treatment,30 d),every two days(I_(2) treatment,12 d),every three days(I_(3) treatment,30 d),and every six days(I_(6) treatment,18 d,after I_(2) treatment).Rates of CO_(2)exchange for estimating net ecosystem CO_(2)exchange(F_(N)),ecosystem respiration(R_(E)),and soil respiration(R_(S))were measured,and gross C uptake by plants(F_(G))and respiration from leaves(R_(L))were calculated during two periods,1–12 and 13–30 d,of the 30-d experiment.During the first 12 d,there were no significant differences in cumulative F_(N)(mean±standard deviation,61±30 g C m^(-2),n=4).During the subsequent 18 d,cumulative F_(N) decreased with decreasing irrigation frequency and increasing cumulative soil water deficit(W),with values of 70±22,60±16,and 18±12 g C m^(-2) for the I_(1),I_(3),and I_(6) treatments,respectively.There were similar decreases in F_(G),R_(E),and R_(L) with increasing W,but differences in R_(S) were not significant.Use of the C_(4) grass growing in a C_(3)-derived soil enabled partitioning of R_(S) into its autotrophic(R_(A))and heterotrophic(R_(H))components using a^(13)C natural abundance isotopic technique at the end of the experiment when differences in cumulative W between the treatments were the greatest.The values of R_(H) and its percentage contributions to R_(S)(43%±8%,42%±8%,and 8%±5%for the I_(1),I_(3),and I_(6) treatments,respectively)suggested that R_(H) remained unaffected across a wide range of W and then decreased under extreme W.There were no significant differences in aboveground biomass between the treatments.Nitrous oxide(N_(2)O)emission was measured to determine if there was a trade-off effect between irrigation frequency and increasing W on net greenhouse gas emission,but no significant differences were found between the treatments.These findings suggest that over short periods in well-drained soil,irrigation frequency could be managed to manipulate soil water deficit in order to reduce net belowground respiratory C losses,particularly those from the microbial decomposition of soil organic matter,with no significant effect on biomass production and N_(2)O emission. 展开更多
关键词 ^(13)C natural abundance CO_(2)exchange N_(2)O emission soil heterotrophic respiration water deficit
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部