Traditionally, the optimization algorithm based on physics principles has some shortcomings such as low population diversity and susceptibility to local extrema. A new optimization algorithm based on kinetic-molecular...Traditionally, the optimization algorithm based on physics principles has some shortcomings such as low population diversity and susceptibility to local extrema. A new optimization algorithm based on kinetic-molecular theory(KMTOA) is proposed. In the KMTOA three operators are designed: attraction, repulsion and wave. The attraction operator simulates the molecular attraction, with the molecules moving towards the optimal ones, which makes possible the optimization. The repulsion operator simulates the molecular repulsion, with the molecules diverging from the optimal ones. The wave operator simulates the thermal molecules moving irregularly, which enlarges the searching spaces and increases the population diversity and global searching ability. Experimental results indicate that KMTOA prevails over other algorithms in the robustness, solution quality, population diversity and convergence speed.展开更多
It is significant to combine multiple tasks into an optimal work package in decision-making of aircraft maintenance to reduce cost,so a cost rate model of combinatorial maintenance is an urgent need.However,the optima...It is significant to combine multiple tasks into an optimal work package in decision-making of aircraft maintenance to reduce cost,so a cost rate model of combinatorial maintenance is an urgent need.However,the optimal combination under various constraints not only involves numerical calculations but also is an NP-hard combinatorial problem.To solve the problem,an adaptive genetic algorithm based on cluster search,which is divided into two phases,is put forward.In the first phase,according to the density,all individuals can be homogeneously scattered over the whole solution space through crossover and mutation and better individuals are collected as candidate cluster centres.In the second phase,the search is confined to the neighbourhood of some selected possible solutions to accurately solve with cluster radius decreasing slowly,meanwhile all clusters continuously move to better regions until all the peaks in the question space is searched.This algorithm can efficiently solve the combination problem.Taking the optimization on decision-making of aircraft maintenance by the algorithm for an example,maintenance which combines multiple parts or tasks can significantly enhance economic benefit when the halt cost is rather high.展开更多
To solve the shortest path planning problems on grid-based map efficiently,a novel heuristic path planning approach based on an intelligent swarm optimization method called Multivariant Optimization Algorithm( MOA) an...To solve the shortest path planning problems on grid-based map efficiently,a novel heuristic path planning approach based on an intelligent swarm optimization method called Multivariant Optimization Algorithm( MOA) and a modified indirect encoding scheme are proposed. In MOA,the solution space is iteratively searched through global exploration and local exploitation by intelligent searching individuals,who are named as atoms. MOA is employed to locate the shortest path through iterations of global path planning and local path refinements in the proposed path planning approach. In each iteration,a group of global atoms are employed to perform the global path planning aiming at finding some candidate paths rapidly and then a group of local atoms are allotted to each candidate path for refinement. Further,the traditional indirect encoding scheme is modified to reduce the possibility of constructing an infeasible path from an array. Comparative experiments against two other frequently use intelligent optimization approaches: Genetic Algorithm( GA) and Particle Swarm Optimization( PSO) are conducted on benchmark test problems of varying complexity to evaluate the performance of MOA. The results demonstrate that MOA outperforms GA and PSO in terms of optimality indicated by the length of the located path.展开更多
Volume variation is an uncertainty element which affects timber processing. We studied the volume variation of logs caused by quality defects in traditional timber processing and set up an optimization approach,using ...Volume variation is an uncertainty element which affects timber processing. We studied the volume variation of logs caused by quality defects in traditional timber processing and set up an optimization approach,using a robust optimization method. We used total number of acceptable boards produced to study the relationship between board thickness and raw material logs, using a heuristic search algorithm to control the variation of board volume to improve the output of boards, reduce the quantity of by-products, and lower production costs. The robust optimization method can effectively control the impact of volume variations in timber processing, reduce cutting waste as far as possible using incremental processing and increase profits, maximize the utilization ratio of timber, prevent waste in processing, cultivate the productive type of tree species and save forest resources.展开更多
A real-life problem is the rostering of nurses at hospitals.It is a famous nondeterministic,polynomial time(NP)-hard combinatorial optimization problem.Handling the real-world nurse rostering problem(NRP)constraints i...A real-life problem is the rostering of nurses at hospitals.It is a famous nondeterministic,polynomial time(NP)-hard combinatorial optimization problem.Handling the real-world nurse rostering problem(NRP)constraints in distributing workload equally between available nurses is still a difficult task to achieve.The international shortage of nurses,in addition to the spread of COVID-19,has made it more difficult to provide convenient rosters for nurses.Based on the literature,heuristic-based methods are the most commonly used methods to solve the NRP due to its computational complexity,especially for large rosters.Heuristic-based algorithms in general have problems striking the balance between diversification and intensification.Therefore,this paper aims to introduce a novel metaheuristic hybridization that combines the enhanced harmony search algorithm(EHSA)with the simulated annealing(SA)algorithm called the annealing harmony search algorithm(AHSA).The AHSA is used to solve NRP from a Malaysian hospital.The AHSA performance is compared to the EHSA,climbing harmony search algorithm(CHSA),deluge harmony search algorithm(DHSA),and harmony annealing search algorithm(HAS).The results show that the AHSA performs better than the other compared algorithms for all the tested instances where the best ever results reported for the UKMMC dataset.展开更多
Recently, the development of Industrial Internet of Things hastaken the advantage of 5G network to be more powerful and more intelligent.However, the upgrading of 5G network will cause a variety of issues increase,one...Recently, the development of Industrial Internet of Things hastaken the advantage of 5G network to be more powerful and more intelligent.However, the upgrading of 5G network will cause a variety of issues increase,one of them is the increased cost of coverage. In this paper, we proposea sustainable wireless sensor networks system, which avoids the problemsbrought by 5G network system to some extent. In this system, deployingrelays and selecting routing are for the sake of communication and charging.The main aim is to minimize the total energy-cost of communication underthe precondition, where each terminal with low-power should be charged byat least one relay. Furthermore, from the perspective of graph theory, weextract a combinatorial optimization problem from this system. After that,as to four different cases, there are corresponding different versions of theproblem. We give the proofs of computational complexity for these problems,and two heuristic algorithms for one of them are proposed. Finally, theextensive experiments compare and demonstrate the performances of thesetwo algorithms.展开更多
The traveling salesman problem has long been regarded as a challenging application for existing optimization methods as well as a benchmark application for the development of new optimization methods. As with many exi...The traveling salesman problem has long been regarded as a challenging application for existing optimization methods as well as a benchmark application for the development of new optimization methods. As with many existing algorithms, a traditional genetic algorithm will have limited success with this problem class, particularly as the problem size increases. A rule based genetic algorithm is proposed and demonstrated on sets of traveling salesman problems of increasing size. The solution character as well as the solution efficiency is compared against a simulated annealing technique as well as a standard genetic algorithm. The rule based genetic algorithm is shown to provide superior performance for all problem sizes considered. Furthermore, a post optimal analysis provides insight into which rules were successfully applied during the solution process which allows for rule modification to further enhance performance.展开更多
Traveling salesman problem(TSP) is one of the typical NP-hard problems, and it has been used in many engineering applications. However, the previous swarm intelligence(SI) based algorithms for TSP cannot coordinate wi...Traveling salesman problem(TSP) is one of the typical NP-hard problems, and it has been used in many engineering applications. However, the previous swarm intelligence(SI) based algorithms for TSP cannot coordinate with the exploration and exploitation abilities and are easily trapped into local optimum. In order to deal with this situation, a new hybrid optimization algorithm based on wolf pack search and local search(WPS-LS)is proposed for TSP. The new method firstly simulates the predatory process of wolf pack from the broad field to a specific place so that it allows for a search through all possible solution spaces and prevents wolf individuals from getting trapped into local optimum. Then, local search operation is used in the algorithm to improve the speed of solving and the accuracy of solution. The test of benchmarks selected from TSPLIB shows that the results obtained by this algorithm are better and closer to the theoretical optimal values with better robustness than those obtained by other methods.展开更多
基金Project(61174140)supported by the National Natural Science Foundation of ChinaProject(13JJA002)supported by Hunan Provincial Natural Science Foundation,ChinaProject(20110161110035)supported by the Doctoral Fund of Ministry of Education of China
文摘Traditionally, the optimization algorithm based on physics principles has some shortcomings such as low population diversity and susceptibility to local extrema. A new optimization algorithm based on kinetic-molecular theory(KMTOA) is proposed. In the KMTOA three operators are designed: attraction, repulsion and wave. The attraction operator simulates the molecular attraction, with the molecules moving towards the optimal ones, which makes possible the optimization. The repulsion operator simulates the molecular repulsion, with the molecules diverging from the optimal ones. The wave operator simulates the thermal molecules moving irregularly, which enlarges the searching spaces and increases the population diversity and global searching ability. Experimental results indicate that KMTOA prevails over other algorithms in the robustness, solution quality, population diversity and convergence speed.
基金supported by the National Natural Science Foundation of China(6107901361079014+4 种基金61403198)the National Natural Science Funds and Civil Aviaiton Mutual Funds(U1533128U1233114)the Programs of Natural Science Foundation of China and China Civil Aviation Joint Fund(60939003)the Natural Science Foundation of Jiangsu Province in China(BK2011737)
文摘It is significant to combine multiple tasks into an optimal work package in decision-making of aircraft maintenance to reduce cost,so a cost rate model of combinatorial maintenance is an urgent need.However,the optimal combination under various constraints not only involves numerical calculations but also is an NP-hard combinatorial problem.To solve the problem,an adaptive genetic algorithm based on cluster search,which is divided into two phases,is put forward.In the first phase,according to the density,all individuals can be homogeneously scattered over the whole solution space through crossover and mutation and better individuals are collected as candidate cluster centres.In the second phase,the search is confined to the neighbourhood of some selected possible solutions to accurately solve with cluster radius decreasing slowly,meanwhile all clusters continuously move to better regions until all the peaks in the question space is searched.This algorithm can efficiently solve the combination problem.Taking the optimization on decision-making of aircraft maintenance by the algorithm for an example,maintenance which combines multiple parts or tasks can significantly enhance economic benefit when the halt cost is rather high.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61261007,61002049)the Key Program of Yunnan Natural Science Foundation(Grant No.2013FA008)
文摘To solve the shortest path planning problems on grid-based map efficiently,a novel heuristic path planning approach based on an intelligent swarm optimization method called Multivariant Optimization Algorithm( MOA) and a modified indirect encoding scheme are proposed. In MOA,the solution space is iteratively searched through global exploration and local exploitation by intelligent searching individuals,who are named as atoms. MOA is employed to locate the shortest path through iterations of global path planning and local path refinements in the proposed path planning approach. In each iteration,a group of global atoms are employed to perform the global path planning aiming at finding some candidate paths rapidly and then a group of local atoms are allotted to each candidate path for refinement. Further,the traditional indirect encoding scheme is modified to reduce the possibility of constructing an infeasible path from an array. Comparative experiments against two other frequently use intelligent optimization approaches: Genetic Algorithm( GA) and Particle Swarm Optimization( PSO) are conducted on benchmark test problems of varying complexity to evaluate the performance of MOA. The results demonstrate that MOA outperforms GA and PSO in terms of optimality indicated by the length of the located path.
基金supported by the Fundamental Research Funds for the Central Universities(Project No.2572015CB06)Nature Science Foundation of Heilongjiang Province(LC201407)
文摘Volume variation is an uncertainty element which affects timber processing. We studied the volume variation of logs caused by quality defects in traditional timber processing and set up an optimization approach,using a robust optimization method. We used total number of acceptable boards produced to study the relationship between board thickness and raw material logs, using a heuristic search algorithm to control the variation of board volume to improve the output of boards, reduce the quantity of by-products, and lower production costs. The robust optimization method can effectively control the impact of volume variations in timber processing, reduce cutting waste as far as possible using incremental processing and increase profits, maximize the utilization ratio of timber, prevent waste in processing, cultivate the productive type of tree species and save forest resources.
文摘A real-life problem is the rostering of nurses at hospitals.It is a famous nondeterministic,polynomial time(NP)-hard combinatorial optimization problem.Handling the real-world nurse rostering problem(NRP)constraints in distributing workload equally between available nurses is still a difficult task to achieve.The international shortage of nurses,in addition to the spread of COVID-19,has made it more difficult to provide convenient rosters for nurses.Based on the literature,heuristic-based methods are the most commonly used methods to solve the NRP due to its computational complexity,especially for large rosters.Heuristic-based algorithms in general have problems striking the balance between diversification and intensification.Therefore,this paper aims to introduce a novel metaheuristic hybridization that combines the enhanced harmony search algorithm(EHSA)with the simulated annealing(SA)algorithm called the annealing harmony search algorithm(AHSA).The AHSA is used to solve NRP from a Malaysian hospital.The AHSA performance is compared to the EHSA,climbing harmony search algorithm(CHSA),deluge harmony search algorithm(DHSA),and harmony annealing search algorithm(HAS).The results show that the AHSA performs better than the other compared algorithms for all the tested instances where the best ever results reported for the UKMMC dataset.
基金The authors would like to extend their gratitude to King Saud University(Riyadh,Saudi Arabia)for funding this research through Researchers Supporting Project number(RSP-2021/260)And this work was supported by the Natural Science Foundation of Hunan Province,China(Grant No.2020JJ4949)the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant No.CX20200883).
文摘Recently, the development of Industrial Internet of Things hastaken the advantage of 5G network to be more powerful and more intelligent.However, the upgrading of 5G network will cause a variety of issues increase,one of them is the increased cost of coverage. In this paper, we proposea sustainable wireless sensor networks system, which avoids the problemsbrought by 5G network system to some extent. In this system, deployingrelays and selecting routing are for the sake of communication and charging.The main aim is to minimize the total energy-cost of communication underthe precondition, where each terminal with low-power should be charged byat least one relay. Furthermore, from the perspective of graph theory, weextract a combinatorial optimization problem from this system. After that,as to four different cases, there are corresponding different versions of theproblem. We give the proofs of computational complexity for these problems,and two heuristic algorithms for one of them are proposed. Finally, theextensive experiments compare and demonstrate the performances of thesetwo algorithms.
文摘The traveling salesman problem has long been regarded as a challenging application for existing optimization methods as well as a benchmark application for the development of new optimization methods. As with many existing algorithms, a traditional genetic algorithm will have limited success with this problem class, particularly as the problem size increases. A rule based genetic algorithm is proposed and demonstrated on sets of traveling salesman problems of increasing size. The solution character as well as the solution efficiency is compared against a simulated annealing technique as well as a standard genetic algorithm. The rule based genetic algorithm is shown to provide superior performance for all problem sizes considered. Furthermore, a post optimal analysis provides insight into which rules were successfully applied during the solution process which allows for rule modification to further enhance performance.
基金the National Natural Science Foundation of China(No.61502198)the Science&Technology Development Project of Jilin Province(Nos.20180101334JC and 20190302117GX)the"3th-Five Year" Science and Technology Research Project of Education Department of Jilin Province(No.JJKH20170574KJ)
文摘Traveling salesman problem(TSP) is one of the typical NP-hard problems, and it has been used in many engineering applications. However, the previous swarm intelligence(SI) based algorithms for TSP cannot coordinate with the exploration and exploitation abilities and are easily trapped into local optimum. In order to deal with this situation, a new hybrid optimization algorithm based on wolf pack search and local search(WPS-LS)is proposed for TSP. The new method firstly simulates the predatory process of wolf pack from the broad field to a specific place so that it allows for a search through all possible solution spaces and prevents wolf individuals from getting trapped into local optimum. Then, local search operation is used in the algorithm to improve the speed of solving and the accuracy of solution. The test of benchmarks selected from TSPLIB shows that the results obtained by this algorithm are better and closer to the theoretical optimal values with better robustness than those obtained by other methods.