A GaN/A10.3Ga0.TN/A1N/GaN high-electron mobility transistor utilizing a field plate (with a 0.3 μm overhang towards the drain and a 0.2 μm overhang towards the source) over a 165-nm sputtered HfO2 insulator (HfO2...A GaN/A10.3Ga0.TN/A1N/GaN high-electron mobility transistor utilizing a field plate (with a 0.3 μm overhang towards the drain and a 0.2 μm overhang towards the source) over a 165-nm sputtered HfO2 insulator (HfO2-FP- HEMT) is fabricated on a sapphire substrate. Compared with the conventional field-plated HEMT, which has the same geometric structure but uses a 60-nm SiN insulator beneath the field plate (SiN-FP-HEMT), the HfO2-FP-HEMT exhibits a significant improvement of the breakdown voltage (up to 181 V) as well as a record field-plate efficiency (up to 276 V/μm). This is because the HfO2 insulator can further improve the modulation of the field plate on the electric field distribution in the device channel, which is proved by the numerical simulation results. Based on the simulation results, a novel approach named the proportional design is proposed to predict the optimal dielectric thickness beneath the field plate. It can simplify the field-plated HEMT design significantly.展开更多
The retention characteristics of electrons and holes in hafnium oxide with post-deposition annealing in a N2 or 02 ambient were investigated by Kelvin probe force microscopy. The KFM results show that compared with th...The retention characteristics of electrons and holes in hafnium oxide with post-deposition annealing in a N2 or 02 ambient were investigated by Kelvin probe force microscopy. The KFM results show that compared with the N2 PDA process, the O2 PDA process can lead to a significant retention improvement. Vertical charge leakage and lateral charge spreading both played an important role in the charge loss mechanisms. The retention improvement is attributed to the deeper trap energy. For electrons, the trap energy of the HOS structure annealed in a N2 or 02 ambient were determined to be about 0.44 and 0.49 eV, respectively. For holes, these are about 0.34 and 0.36 eV, respectively. Finally, the electrical characteristics of the memory devices are demonstrated from the experiment, which agreed with our characterization results. The qualitative and quantitative determination of the charge retention properties, the possible charge decay mechanism and trap energy reported in this work can be very useful for the characterization of hafnium charge storage devices.展开更多
基金Project supported by the Fundamental Research Funds for the Central Universities,China (Grant No.JY10000925002)the National Key Science & Technology Special Project,China (Grant No.2008ZX01002-002)the National Natural Science Foundation of China (Grant Nos.60736033,60976068,and 61076097)
文摘A GaN/A10.3Ga0.TN/A1N/GaN high-electron mobility transistor utilizing a field plate (with a 0.3 μm overhang towards the drain and a 0.2 μm overhang towards the source) over a 165-nm sputtered HfO2 insulator (HfO2-FP- HEMT) is fabricated on a sapphire substrate. Compared with the conventional field-plated HEMT, which has the same geometric structure but uses a 60-nm SiN insulator beneath the field plate (SiN-FP-HEMT), the HfO2-FP-HEMT exhibits a significant improvement of the breakdown voltage (up to 181 V) as well as a record field-plate efficiency (up to 276 V/μm). This is because the HfO2 insulator can further improve the modulation of the field plate on the electric field distribution in the device channel, which is proved by the numerical simulation results. Based on the simulation results, a novel approach named the proportional design is proposed to predict the optimal dielectric thickness beneath the field plate. It can simplify the field-plated HEMT design significantly.
基金Project supported by the MOST(Nos.2010CB934200,2011CBA00600)the National Natural Science Foundation of China(No.61176073)
文摘The retention characteristics of electrons and holes in hafnium oxide with post-deposition annealing in a N2 or 02 ambient were investigated by Kelvin probe force microscopy. The KFM results show that compared with the N2 PDA process, the O2 PDA process can lead to a significant retention improvement. Vertical charge leakage and lateral charge spreading both played an important role in the charge loss mechanisms. The retention improvement is attributed to the deeper trap energy. For electrons, the trap energy of the HOS structure annealed in a N2 or 02 ambient were determined to be about 0.44 and 0.49 eV, respectively. For holes, these are about 0.34 and 0.36 eV, respectively. Finally, the electrical characteristics of the memory devices are demonstrated from the experiment, which agreed with our characterization results. The qualitative and quantitative determination of the charge retention properties, the possible charge decay mechanism and trap energy reported in this work can be very useful for the characterization of hafnium charge storage devices.