A Ge/Si heterojunction L-shaped tunnel field-effect transistor combined with hetero-gate-dielectric (GHL-TFET) is proposed and investigated by TCAD simulation. Current-voltage characteristics, energy-band diagrams, ...A Ge/Si heterojunction L-shaped tunnel field-effect transistor combined with hetero-gate-dielectric (GHL-TFET) is proposed and investigated by TCAD simulation. Current-voltage characteristics, energy-band diagrams, and the distri- bution of the band-to-band tunneling (BTBT) generation rate of GHL-TFET are analyzed. In addition, the effect of the vertical channel width on the ON-current is studied and the thickness of the gate dielectric is optimized for better suppression of ambipolar current. Moreover, analog/RF figure-of-merits of GHL-TFET are also investigated in terms of the cut-off frequency and gain bandwidth production. Simulation results indicate that the ON-current of GHL-TFET is increased by about three orders of magnitude compared with that of the conventional L-shaped TFET. Besides, the introduction of the hetero-gate-dielectric not only suppresses the ambipolar current effectively but also improves the analog/RF performance drastically. It is demonstrated that the maximum cut-off frequency of GHL-TFET is about 160 GHz, which is 20 times higher than that of the conventional L-shaped TFET.展开更多
The single event effect(SEE) sensitivity of silicon–germanium heterojunction bipolar transistor(Si Ge HBT) irradiated by 100-Me V proton is investigated. The simulation results indicate that the most sensitive positi...The single event effect(SEE) sensitivity of silicon–germanium heterojunction bipolar transistor(Si Ge HBT) irradiated by 100-Me V proton is investigated. The simulation results indicate that the most sensitive position of the Si Ge HBT device is the emitter center, where the protons pass through the larger collector-substrate(CS) junction. Furthermore, in this work the experimental studies are also carried out by using 100-Me V proton. In order to consider the influence of temperature on SEE, both simulation and experiment are conducted at a temperature of 93 K. At a cryogenic temperature, the carrier mobility increases, which leads to higher transient current peaks, but the duration of the current decreases significantly.Notably, at the same proton flux, there is only one single event transient(SET) that occurs at 93 K. Thus, the radiation hard ability of the device increases at cryogenic temperatures. The simulation results are found to be qualitatively consistent with the experimental results of 100-Me V protons. To further evaluate the tolerance of the device, the influence of proton on Si Ge HBT after gamma-ray(^(60)Coγ) irradiation is investigated. As a result, as the cumulative dose increases, the introduction of traps results in a significant reduction in both the peak value and duration of the transient currents.展开更多
在应变异质结价带偏移从头算赝势法的理论计算中,建议一种以平均键能为参考能级的△E_v 值理论计算方法,该方法在以 Si 为衬底、以 Ge 为衬底和自由共度生长等3种不同应变情况的 Si/Ge 异质结价带偏移△E_v 值计算中,分别得到0.731eV、0...在应变异质结价带偏移从头算赝势法的理论计算中,建议一种以平均键能为参考能级的△E_v 值理论计算方法,该方法在以 Si 为衬底、以 Ge 为衬底和自由共度生长等3种不同应变情况的 Si/Ge 异质结价带偏移△E_v 值计算中,分别得到0.731eV、0.243eV 和0.521eV 的计算结果。展开更多
In this paper the single-event responses of the silicon germanium heterojunction bipolar transistors(SiGe HBTs) are investigated by TCAD simulations and laser microbeam experiment. A three-dimensional(3D) simulation m...In this paper the single-event responses of the silicon germanium heterojunction bipolar transistors(SiGe HBTs) are investigated by TCAD simulations and laser microbeam experiment. A three-dimensional(3D) simulation model is established, the single event effect(SEE) simulation is further carried out on the basis of Si Ge HBT devices, and then, together with the laser microbeam test, the charge collection behaviors are analyzed, including the single event transient(SET) induced transient terminal currents, and the sensitive area of SEE charge collection. The simulations and experimental results are discussed in detail and it is demonstrated that the nature of the current transient is controlled by the behaviors of the collector–substrate(C/S) junction and charge collection by sensitive electrodes, thereby giving out the sensitive area and electrode of SiGe HBT in SEE.展开更多
Phonon transport across an interface is of fundamental importance to applications ranging from electronic and optical devices to thermoelectric materials.The phonon scattering by an interface can dramatically suppress...Phonon transport across an interface is of fundamental importance to applications ranging from electronic and optical devices to thermoelectric materials.The phonon scattering by an interface can dramatically suppress the thermal transport,which can benefit thermoelectric applications but create problems for the thermal management of electronic/optical devices.In this aspect,existing molecular dynamics simulations on phonon transport across various interfaces are often based on estimates of atomic structures and are seldom compared with measurements on real interfaces.In this work,planar Si/Ge heterojunctions formed by film-wafer bonding are measured for the interfacial thermal resistance (R_(K)) that is further compared with predictions from existing simulations and analytical models.The twist angle between a 70-nm-thick Si film and a Ge wafer is varied to check the influence of the crystal misorientation.Detailed transmission electron microscopy studies are carried out to better understand the interfacial atomic structure.It is found that the alloyed interfacial layer with mixed Si and Ge atoms dominates the measured thermal resistance(R_(K)).Some oxygen impurities may also help to increase RK due to the formation of glassy structures.Following this,RK reduction should be focused on how to minimize the interdiffusion of Si and Ge atoms during the formation of a Si/Ge heterojunction.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61574109 and 61204092)
文摘A Ge/Si heterojunction L-shaped tunnel field-effect transistor combined with hetero-gate-dielectric (GHL-TFET) is proposed and investigated by TCAD simulation. Current-voltage characteristics, energy-band diagrams, and the distri- bution of the band-to-band tunneling (BTBT) generation rate of GHL-TFET are analyzed. In addition, the effect of the vertical channel width on the ON-current is studied and the thickness of the gate dielectric is optimized for better suppression of ambipolar current. Moreover, analog/RF figure-of-merits of GHL-TFET are also investigated in terms of the cut-off frequency and gain bandwidth production. Simulation results indicate that the ON-current of GHL-TFET is increased by about three orders of magnitude compared with that of the conventional L-shaped TFET. Besides, the introduction of the hetero-gate-dielectric not only suppresses the ambipolar current effectively but also improves the analog/RF performance drastically. It is demonstrated that the maximum cut-off frequency of GHL-TFET is about 160 GHz, which is 20 times higher than that of the conventional L-shaped TFET.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61574171,61704127,11875229,51872251,and 12027813)。
文摘The single event effect(SEE) sensitivity of silicon–germanium heterojunction bipolar transistor(Si Ge HBT) irradiated by 100-Me V proton is investigated. The simulation results indicate that the most sensitive position of the Si Ge HBT device is the emitter center, where the protons pass through the larger collector-substrate(CS) junction. Furthermore, in this work the experimental studies are also carried out by using 100-Me V proton. In order to consider the influence of temperature on SEE, both simulation and experiment are conducted at a temperature of 93 K. At a cryogenic temperature, the carrier mobility increases, which leads to higher transient current peaks, but the duration of the current decreases significantly.Notably, at the same proton flux, there is only one single event transient(SET) that occurs at 93 K. Thus, the radiation hard ability of the device increases at cryogenic temperatures. The simulation results are found to be qualitatively consistent with the experimental results of 100-Me V protons. To further evaluate the tolerance of the device, the influence of proton on Si Ge HBT after gamma-ray(^(60)Coγ) irradiation is investigated. As a result, as the cumulative dose increases, the introduction of traps results in a significant reduction in both the peak value and duration of the transient currents.
基金supported by the National Natural Science Foundation of China(Grant No.61274106)
文摘In this paper the single-event responses of the silicon germanium heterojunction bipolar transistors(SiGe HBTs) are investigated by TCAD simulations and laser microbeam experiment. A three-dimensional(3D) simulation model is established, the single event effect(SEE) simulation is further carried out on the basis of Si Ge HBT devices, and then, together with the laser microbeam test, the charge collection behaviors are analyzed, including the single event transient(SET) induced transient terminal currents, and the sensitive area of SEE charge collection. The simulations and experimental results are discussed in detail and it is demonstrated that the nature of the current transient is controlled by the behaviors of the collector–substrate(C/S) junction and charge collection by sensitive electrodes, thereby giving out the sensitive area and electrode of SiGe HBT in SEE.
基金the support from National Science Foundation CAREER Award(grant number CBET-1651840)TEM and SEM analyses were performed at the Kuiper Materials Imaging and Characterization facility+2 种基金NASA(grants#NNX12AL47G and#NNX15AJ22G)NSF(grant#1531243)for funding of the instrumentation in the Kuiper Materials Imaging and Characterization Facility at the University of ArizonaU.S.Department of Commerce,National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design(CHiMaD)grant 70NANB19H005.
文摘Phonon transport across an interface is of fundamental importance to applications ranging from electronic and optical devices to thermoelectric materials.The phonon scattering by an interface can dramatically suppress the thermal transport,which can benefit thermoelectric applications but create problems for the thermal management of electronic/optical devices.In this aspect,existing molecular dynamics simulations on phonon transport across various interfaces are often based on estimates of atomic structures and are seldom compared with measurements on real interfaces.In this work,planar Si/Ge heterojunctions formed by film-wafer bonding are measured for the interfacial thermal resistance (R_(K)) that is further compared with predictions from existing simulations and analytical models.The twist angle between a 70-nm-thick Si film and a Ge wafer is varied to check the influence of the crystal misorientation.Detailed transmission electron microscopy studies are carried out to better understand the interfacial atomic structure.It is found that the alloyed interfacial layer with mixed Si and Ge atoms dominates the measured thermal resistance(R_(K)).Some oxygen impurities may also help to increase RK due to the formation of glassy structures.Following this,RK reduction should be focused on how to minimize the interdiffusion of Si and Ge atoms during the formation of a Si/Ge heterojunction.